From Epitope Binning to Function: Case Studies of Antibody Discovery and Characterization at Boehringer Ingelheim

Sept 10, 2019 Guangwei Yang

Outline

Overview of Traditional Process for Ab Discovery

Introduction of LSA

- \circ Kinetics
- \circ Epitope Binning

≻A Case Study

- \circ Overview of the LSA-based New Process
- \circ Kinetics
- Epitope Binning
- Correlation of Epitope Binning with Functional Analysis

Overview of Affinity-Based Ab Screening & Selection Process

Limitations of the process with epitope binning at late stage:

- Epitope diversity preserved?
- Weak binders binding to right epitope missed?
- Both Affinity <u>AND</u> Epitope are linked to Ab function!

How to improve of the efficiency of lead identification?

- Increasing throughput
- Moving epitope binning to upstream to allow more molecule to be screened and more information to be collected
- Delivery of a set of well-characterized mAbs with various affinity & epitope profiles for downstream function analysis

Epitope-Based Ab Screening & Characterization Process

Advantages of Epitope-Based Ab Selection:

- Preserves epitope diversity;
- Identification of additional Abs in the same functional bin, thereby providing multiple leads to choose from;
- Increasing the success of finding therapeutically fitting antibody candidates.

High throughput epitope binning approach is needed!

LSA Integrates Flow Printing & Array SPR

- A combination of flow printing and Surface Plasmon Resonance
- Currently the only instrument available on the market for high throughput SPR kinetics and epitope binning purposes

High Throughput Binding Kinetics on LSA: Assay Setup

Experiment Setup:

- $\circ~$ One on Many Format
- $\,\circ\,$ Single Cycle Kinetics

Advantages

- High Throughput: screening 384 Abs in parallel
- Powerful analysis Software
- o Replicates when Ab number is less

Different instrument design & assay setup from Biacore

- $\circ\,$ Analyte flow path
- o Different setup in "single cycle kinetics"

Multiple Association, one dissociation

Multiple Association, multiple dissociation

High Throughput Binding Kinetics on LSA: Data Output

- > 384 ligand kinetics in one parallel run
- Software automatically flags results with unsatisfied quality

High Throughput Epitope Binning Assay Configurations on LSA

Classical Sandwich

- Array-based amine-coupling of all Abs
- Probe with sequential cycles of antigen followed by individual Ab
- Regenerate and repeat with next Ab
- Ideal for monovalent antigens

Pre-Mix

- Array-based amine-coupling of all Abs
- Inject Ab panel premixed in excess with antigen
- Regenerate and repeat with next premixed Ab/Ag
- Ideal for multivalent antigens

The fact of epitope binning: to use competition profile between each pair of antibodies to group them.

High Throughput Epitope Binning Data Output (classical)

> Automated data output with sensorgrams, heat map and networks

Data linked across visualization panels

Case Study: Testing a new workflow involving LSA-based kinetic analysis and epitope binning

Purpose: To check the correlation between epitope binning with function.

Binding Kinetics (anti-Fc capture) on LSA

	Purified	Sup	Cell Binding
Binder	48	44	47
Non Binder/Poor Fit	12	16	13
Total	60	60	60

- > Consistent within repeats
- Good correlation of binding kinetics between purified mAb and sups
- Consistent with cell surface binding results as well as kinetic data generated on Biacore
- ➤ K_D range: single to triple digit nM

Epitope Binning Setup (Classical Sandwiching)

Materials:

- Antigen: Monomer with 6xHis tag, 94% monomer as determined by AUC
- Antibody: Total 60 mAbs after one-step protein A purification

	Kinetics	Binning		
	Purified	Ligand (amine coupling)	Analyte	
Binder	48	42	53	
Non Binder	12	18	7	
Total	60	60	60	

- Total 74 regeneration cycles
- Completed in 30 hours
- After repeatedly regeneration cycles, Abs are active through the entire experiment

12

Epitope Binning Sensorgrams

Epitope Binning Data Output

Functional Analysis of mAbs

Strong correlation between two agonist assays
Substantial number of neutral binders.

Community Assignment and Correlation with Functional Response

Initial indication that **specific epitopes** correlate with **functional response** of the receptor.

- Group1: neutral
- Group 5 & 8: agonists
- Group 2: antagonist

Data Output with Functional Data Incorporated

Current Stage: more mAbs from additional campaigns are under investigation for function and epitope binning correlation

A tentative LSA-based screening & characterization process:

Proper Preparations Before Starting Epitope Binning Experiments

Materials and Experimental Design

- Quality & valency of both antigen and antibodies
- Antibody Kinetic Profiles
- Non-specific Binding Profiles of Antigen (and Antibody)

➢ Project Timeline & Experiment Spacing When Running Multiple Experiments on LSA

- Project prioritization & coordination
- Sup: time sensitive
- Binning: time consuming
- Instrument maintenance & repair

Summary

- LSA (together with its analysis software) is a powerful instrument for both high throughput binding kinetics and epitope binning in antibody discovery field
- ➢With proper experiment design and data analysis, epitope binning can provide guidance for quick lead identification

Acknowledgement

Kinetics Group:
Cindy Kenny
Gale Hansen
Sarah Low
David Cai
Joseph Mozdzierz

- Expression Group
- Purification Group
- Reagent Group
- Biology Group
- Rachel Kroe-Barrett
- Andrew Nixon

