

Strategies and Approaches for Detailed Label Free Kinetic Analysis using High Throughput SPR

Daniel Bedinger Ph.D. San Diego Seminar September 2019

High Throughput Kinetics

- Detailed kinetic profiling has typically been relegated to a down stream point of characterization in drug discovery
 - The time of analysis and sample usage is commonly limiting
 - Kinetic screening is simplified to expedite the process and reduce sample consumption
 - 1 or 2 antigen concentrations leading to inaccurate determination of $\rm R_{max}, \ k_{a},$ and $\rm K_{\rm D}$
- High throughput kinetics on the LSA is massively parallel
- Solves both time and reagent consumption issues

Assay Considerations for High Throughput Kinetics

- Preparation of the capture surface
- Antigen concentration series
- Power the analysis "n"
- Data Analysis
- Data presentation

It is important to note that while the LSA brings a new scale to kinetic analysis of mAbs, nothing has changed in 20 years regarding how to properly design an SPR experiment.

Improving biosensor analysis.

Myszka DG. J Mol Recognit. 1999 Sep-Oct;12(5):279-84. PMID:10556875

Considerations When Designing Your Assay

- Does your ligand have a high affinity capture option?
 - IgG or Fc construct, Fab, V5 tagged protein, other?
 - Will the capture surface reliably regenerate?
- Do you have a monovalent antigen construct?
- Is the antigen prep sufficiently soluble?
- What is the molecular weight?
- What starting material for ligands?
 - Purified mAbs, Hybridoma supernatants, transient transfection supernatants, B-cell supernatants, yeast supernatants, bacterial periplasmic extracts?

Chip Surface Considerations

- Linear polycarboxylate (HC) surfaces have better transport dynamics than 3D carboxymethyldextran (CMD) hydrogel surfaces
- HC30M is the go-to for IgGs against protein antigens
 - Excellent transport dynamics, relatively high capacity
- Lower concentrations ligand sources or panels targeting very small antigens may benefit from the HC200M
 - roughly 50% higher binding capacity
- CMDP (planar CMD) is the most planar surface
 - Can reduce avidity at low ligand densities
 - roughly 1/3 total capacity of HC30M

Ligand Density and Transport Limitations

- <u>ALL</u> flow cells contain an unstirred layer through which analytes must diffuse to reach the chip surface.
- Low ligand densities reduce mass transport effects.

Fick's Law:
$$J = -D \ \frac{d[A]}{dx}$$

- J = analyte flux D = diffusion coefficient
- X = diffusion distance

Surface Density and Transport Limitations

• Fast on-rate clones show clear density dependent transport limitations

Transport limitations manifest differently in clones with slower on-rates

Rmax = 57 *k*_a = 9.3 x 10⁴ M⁻¹S⁻¹

Rmax = 597 $k_a = 8.4 \times 10^4 \text{ M}^{-1}\text{S}^{-1}$ Rmax = 1000 $k_a = 8.2 \times 10^5 \,\mathrm{M}^{-1}\mathrm{S}^{-1}$

• In this clone with an order of magnitude slower on-rate, kinetic estimates show only a modest trend with density.

- The transport limitation does affect the goodness of fit

Surface matrix and transport limitation

- 3D hydrogels (CMD) act as a diffusion barrier
 - The apparent on-rate is reduced several fold compared to the more planar chip types
- Note that this effect is common to all flow cell based biosensors and has been previously reported:
 - Expanding the ProteOn XPR36 biosensor into a 36-ligand array expedites protein interaction analysis. Anal Biochem. 2011 Abdiche YN, Lindquist KC, Pinkerton A, Pons J, Rajpal A. PMID: 21168382

Above data Submitted to PLOS ONE

Capture Kinetics Assay Example

- Screen 384 mAbs in parallel for binding to specific Ag
 - Unattended analysis of up to 1152 mAbs, 3 x 384well plates
- Highly parallel analysis enables exquisite kinetic discrimination of clones
- Binding to multiple antigens e.g. orthologs and homologs of target

Assay Steps:

- Prepare capture surface (lawn)
- Capture mAbs
- Inject kinetic series of antigen(s)

Minimal sample requirements:

- 13 µg anti-human IgG Fc (coupled)
- <1 µg/mAb (captured)
- 7 µg antigen (analyte)

Preparing the capture surface

Capture Ligand Concentration- Go high

- To immobilize a homogenous capture surface or "lawn" use 30-100 $\mu\text{g/mL}$
- Reduce capture capacity by activation, not concentration
- Capture Ligand Formulation:
 - 10 mM Acetate pH 4.25 is typical
 - Recommend to perform a pre-concentration test for new ligands
 - If the capture ligand is formulated in a non-amine free buffer, with high salt, or at low concentration, buffer exchange into the appropriate coupling buffer

Antigen Concentration Series

- The LSA uses one injected volume per concentration over the entire 384 ligand array
- Even with high concentration antigen usage for kinetic assays is typically not limiting.
- This allows for the use of a robust dilution series starting at a high initial concentration.
 - Typically 1 µM with an 8-point serial dilution, 457 pM lowest concentration.
- This allows for effective characterization over a broad kinetic range > 10,000 fold

Both Slow and Rapid Kinetics are Well Described

Capture kinetics of a 192-scFv array from crude periplasmic extracts via anti-V5 mAb coated chip

Screen Many or Increase Your N

• Reproducibility across the array allows you to screen with confidence

Power the Analysis

Use of high replication adds confidence to small differences

- Example: Slow off-rates can be estimated with better statistical power if the data is collected with significant replication.
- 6 ligand densities, duplicates of 2 concentrations with 60 minute dissociation
- Total collected off-rate time is 24 hours from only 6 spots of an available 384, and 4.5 hours of collected data.

Data Analysis: LSA Kinetics Software

- Built to handle 1000's of interactions
- Batch-processing
- Automatically data QC to flags
- Facilitates multiplexed
- Results export to an Excel file

What Does High Throughput Kinetics Look Like?

				2												
															2	
								2	1							
			A	A					\sim							
												and the second s				
	2															
										A	A		B			
					1	E.	E.			10	A	8	A			
														\sim		
										1		1				1
										6	6	16				
	<u>a</u>															
																The second se

• 384 Ligand Kinetics, 1 Parallel Run, 8 Concentrations, 7 µg Antigen

Software automatically flags the Good, Bad, and Ugly

ROIs with no/low binding, poor fit, or with kinetics pushing the assay limitations are identified automatically.

19

%carterra

General considerations for data analysis

- Use of blank cycles for double referencing should be approached thoughtfully.
- Inclusion or omission of analyte cycles-
 - Sometimes higher is not better
- Zeroing: If regeneration is not complete, a serial Y-alignment can be applied
 - This allows for standard kinetic model fitting, but the T₀ parameter can be floated

Data Presentation

- The kinetics software has a variety of useful tools to visualize data effectively
- Array view: striking and highly customizable visualization of your library's kinetic diversity
 - Color by ligand set, color by analyte set
- Iso-affinity plots
- Statistics page reports and plots mean and standard deviations for key fitted parameters

Iso-Affinity Plot

- Iso-affinity plots facilitate assessment of kinetic diversity within a mAb panel
- The blue highlights weak, medium, and high affinity clones
- Kinetics are well described covering a 10,000 fold K_D range

Statistics Page

• Statistics page reports and plots mean and standard deviations for key fitted parameters

Mean $K_{\rm D}$ (M) 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.0E-1 Mean $k_{\rm D}$ (s⁻¹) 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-0 Mean k_a (M⁻¹ s⁻¹) 5.0E+05 5.0E+04 5.0E+0

Ligand	n	Mean <i>k</i> _a (M- 1 s-1)	k _a Std. Dev.	Mean k _d (s- 1)	k _d Std. Dev.	Mean K _D (M)	K _D Std. Dev.	Mean Rmax (RU)	Rmax Std. Dev.	Mean Res sd	Std. Dev. Res sd
34154	12	1.77E+05	1.26E+04	1.90E-03	8.36E-05	11 nM	895 pM	236	26	52	5.2
34728	12	1.41E+05	2.94E+05	2.34E-04	2.85E-04	12 nM	29 nM	17	11	8	4.7
34729	12	9.15E+04	5.22E+03	1.80E-04	1.18E-05	2.0 nM	172 pM	228	15	129	8.9
34730	12	1.96E+04	1.44E+03	3.14E-03	3.10E-04	160 nM	20 nM	167	14	14	1.4
34731	12	1.56E+05	1.33E+04	3.17E-03	2.56E-04	20 nM	2.4 nM	206	15	22	2.6
34732	12	1.20E+05	6.83E+03	3.22E-04	3.29E-05	2.7 nM	317 pM	236	32	129	20
34733	12	9.81E+04	3.43E+03	6.55E-04	7.04E-05	6.7 nM	755 pM	228	20	98	11
34734	12	4.09E+04	1.75E+03	3.37E-03	1.44E-04	83 nM	5.0 nM	214	26	16	2.8
34735	12	1.91E+05	1.14E+04	6.80E-05	1.62E-05	359 pM	88 pM	269	29	181	21
34736	12	2.64E+05	1.54E+04	4.00E-04	1.91E-05	1.5 nM	114 pM	247	22	141	13
34737	12	3.55E+04	2.04E+03	1.50E-04	9.93E-06	4.2 nM	372 pM	246	21	123	12
34738	12	1.99E+05	9.04E+03	9.78E-05	1.95E-05	493 pM	101 pM	263	18	175	14
34739	12	3.79E+04	2.12E+03	2.15E-03	1.15E-04	57 nM	4.4 nM	224	17	33	4
34740	12	1.13E+05	6.11E+03	1.45E-03	1.21E-04	13 nM	1.3 nM	202	17	56	7.8
34741	12	9.86E+03	3.79E+02	2.98E-05	1.59E-05	3.0 nM	1.6 nM	226	18	89	7.9
34742	12	1.11E+05	1.14E+04	1.44E-05	5.68E-06	128 pM	52 pM	238	25	154	16
34747	8	4.16E+04	6.35E+03	2.97E-04	3.61E-05	7.2 nM	1.4 nM	233	10	109	6.4
34749	12	8.43E+04	4.11E+03	8.39E-05	2.32E-05	991 pM	278 pM	228	32	137	20
34750	12	1.22E+05	5.53E+03	4.22E-05	2.26E-05	343 pM	184 pM	249	37	162	25
34751	12	1.68E+05	1.90E+04	5.97E-05	1.77E-05	351 pM	111 pM	229	39	152	26
34753	8	1.50E+05	1.46E+04	1.08E-01	6.02E-03	726 nM	81 nM	222	12	2.9	0.64
34757	8	2.71E+05	1.64E+04	1.85E-03	1.32E-04	6.9 nM	641 pM	239	21	59	11
34758	8	2.57E+05	8.16E+03	1.48E-03	1.11E-04	5.8 nM	469 pM	220	27	66	12
34759	8	2.91E+05	1.25E+04	1.59E-03	4.42E-05	5.5 nM	281 pM	232	26	66	7.8
34760	8	1.19E+05	8.80E+03	2.48E-05	1.44E-05	212 pM	124 pM	232	18	151	13
34761	8	9.58E+04	4.04E+03	4.62E-04	4.42E-05	4.8 nM	505 pM	240	21	117	13
34762	8	6.82E+04	4.53E+03	1.09E-04	1.69E-05	1.6 nM	272 pM	308	17	176	11
34763	8	1.29E+05	1.37E+04	3.75E-04	3.19E-05	2.9 nM	399 pM	262	30	141	16
34764	12	6.13E+04	2.29E+03	7.01E-04	2.02E-05	11 nM	541 pM	282	17	110	7.8
34765	8	2.03E+05	1.72E+04	4.31E-02	1.38E-03	214 nM	19 nM	259	10	4.8	1.2
34766	12	4.42E+04	2.15E+03	2.01E-02	1.72E-03	455 nM	45 nM	226	14	3.8	0.59
34767	12	1.15E+05	3.53E+03	1.52E-03	1.00E-04	13 nM	964 pM	234	24	62	8.2
34768	12	2.79E+05	2.60E+04	2.16E-03	1.59E-04	7.8 nM	925 pM	225	20	50	6.9
34769	12	1.75E+05	1.94E+04	2.41E-05	6.76E-06	141 pM	43 pM	248	25	169	17

Capture Kinetics Comparison, Time and Volume: LSA vs. 8K

This represents a capture kinetics assay with equivalent number of injections (7 concentrations + blank) for assay timing on both systems.

3

Benchmark LSA vs Biacore 8K

K_D (nM) (36 clones)

Above data Submitted to PLOS ONE

 Excellent agreement in kinetic rate constants (within 2 fold, when match chip types)

 Excellent agreement across wide affinity range <100pM to >100nM

Summary

- The LSA provides a unique approach to high throughput kinetic screening and characterization
- The LSA enables detailed characterization assays at the initial screening stages by removing sample and time constraints
- High quality kinetic analysis can be easily performed on large numbers of crude samples
- The same rules apply for good experimental design as with other SPR biosensors, and attention to detail is important for good results

