carterra

Required Maintenance

After Every Surface Prep Array or Capture Kinetics

- Experiment
- Prime the PH into $H_2O + 0.05\%$ T-20.

Weekly

- Check LSA PC for Windows Updates
 - Install any updates and enable the Pause
 Windows Updates for 7 Days feature.
- Restart LSA PC
 - Backup experiment data.
 - Run a system prime
 - Ensure the cleaning slides are cleaned with DI H₂O and 70% IPA/EtOH before docking on slides.
 - Prime SFC and PH on the cleaning slides (H₂O + 0.05% T-20).
- Clean PH Face
 - A DI H₂O soaked Kimwipe can be used to gently blot the tip of the PH that interfaces with the cleaning slide.
- Run a System Clean
 - In Navigator, under "Cleaning and Maintenance," select Clean.

As Needed or After Supernatants

- Clean Face of SFC
 - A DI H₂O soaked Kimwipe can be used to gently blot and wipe the underside/gasket of the SFC to remove any buildup.
- Run a System Clean
 - In Navigator, under "Cleaning and Maintenance," select Clean.

Quarterly

- Run a System Sanitize
 - In Navigator, under "Cleaning and Maintenance," select Sanitize.
- Before running experiments, run 3 system primes with H₂O + 0.05% T-20.
 - Prime the SFC and PH on the cleaning slides, ensuring they are cleaned between each prime.

Before Extended Idle Time

- Run a Sanitize +Sleep
 - In Navigator, under "Cleaning and Maintenance," select Sanitize + Sleep. After the Sanitize, you will be prompted to move the lines to an empty bottle.
 - Close Navigator and leave the LSA and computer powered ON.

After Extended Idle Time

- Install any pending Windows updates and Reboot the LSA computer.
- Place all the lines (B1, B2, H_2O , C1, C2) in a bottle of H_2O + 0.05% T-20 and run a Sanitize under the "Cleaning and Maintenance" section.
 - Ensure the cleaning slides are cleaned with DI H₂O and 70% IPA/EtOH before docking on slides.

LSA[®] Maintenance & Best Practices Guide

Best Practices

Before Every Prime

Clean the glass slides with DI $\rm H_{2}O$ and 70% IPA/EtOH before docking on slides.

For Every Experiment

- Before the experiment, run 2 primes.
- After the experiment, prime into $H_2O + 0.05\%$ T-20.

Chip Preconditioning

When loading a new chip, always perform a chip preconditioning experiment as the first experiment on that chip.

Buffer Preparation

- Ensure the buffer is fully homogenized by inverting the running buffer bottle at least 8 times to mix.
- Filter and degas the homogenized running buffer.
- Set some of the buffer aside for Sample Preparation.

Sample Preparation

• EDC/S-NHS

- Mix the reagents together as close to the start of the experiment as possible.
- Buffer
 - Prepare fresh daily to avoid contamination.
 - Keep running buffer at room temperature.
- Ligand
 - Ensure the ligands are concentrated enough for at least a 10-fold dilution into 10mM Sodium Acetate for direct coupling.
 - When possible, immobilize at different densities and in replicates.
 - Supernatants should be diluted at minimum 2-fold.
- Analyte
 - Buffer exchange the proteins into running buffer to avoid refractive index mismatches.
 - Ensure the tubes and plates do not have bubbles at the bottom of the wells.

Thermals

Allow the Interaction temperature to equilibrate to the set temperature with the SPR chip inserted for at least 45 min prior to starting the experiment.

Chip Reuse

- Do not use a capture lawn more than 15 times.
- When storing lawns for later use, fill the chip bath with 2 mL of 50% glycerol 50% running buffer in an airtight Tupperware container at 4° C.
 - Ensure the glycerol solution is removed from the surface before reuse. Reusing capture lawns after storage significantly reduces the usability of the surface.
- When re-inserting a lawn in the LSA ensure the glass prism sides are clean and free of spots. If present, clean with a 70% IPA/EtOH solution.

Experimental Method

- Kinetics
 - Ensure the method includes enough leading buffer blanks to achieve a stable/flat injection profile to use as the leading blank when analyzing.
 - Keep kinetics R-max below 150 RU for lower ligand densities that result in more accurate measurements.
- Epitope
 - Immobilize ligand mAbs to at least 200 RU for robust signals.
 - Identify proper Regeneration conditions that achieve complete regeneration of the Ligands.
 - When binning > 192 Abs, break the experiment into two separate experiments.
 - Ensure two buffer or Ag controls are included at the start of each binning experiment.