

Leveraging computation and HTP experimentation to engineer biologics

Grant Murphy

Executive Director,

Discovery Biologics

27 June 2023

Merck Research Labs Mission

To translate breakthroughs in fundamental biomedical research into meaningful new therapeutics and vaccines that improve and extend the lives of people, worldwide.

We're conducting R&D to address some of the world's most urgent global health challenges.

Merck Research Laboratories

<u>London, UK</u>

MERCK

OUR GLOBAL LEADERSHIP IN ONCOLOGY

Foundational cancer treatment

First-in-class poly ADP ribose polymerase (PARP) inhibitor (collaboration with AstraZeneca)

Broad-based tyrosine kinase inhibitor (collaboration with Eisai to develop novel combination therapies with Keytruda)

- Committed to establishing strategic partnerships to develop the most effective therapies for our patients
- Alliance to Advance Patient-Centered Cancer Care
 - \$15M, five-year (2017-2021) commitment from Merck Foundation
 - Aim to increase timely access to patient-centered care and reduce disparities in cancer care for underserved communities
- American Cancer Society (ACS) Global Navigation
 - Nearly \$2M, five-year (2019-2023) commitment from Merck Foundation
 - Helps ACS bring its patient navigation expertise to countries in resource-limited settings and with a growing burden of cancer

Our View of Protein Engineering

Computational Based Methods Evolution Based Methods Multiple HPC Centers Internal PDB/Blast/etc https://github.com/Merck/ **Broad collaborations** Machine Learning **Based Methods** -**Functional Protein**

Merck Discovery Biologics

Public

Discovery Biologics Technologies

Yeast Display & Phage Display

GlycoFi yeast strains w/ humanized glycosylation

Advanced Automation

Computational Design & Machine Learning

Structure- and sequence-based analysis of VHH

Structural analysis of known VHH Sequence analysis of camelid repertoires **CDRH2** alpaca **CDRH1** alpaca 4.0-V_HH-antigen Bitscore structures 3.0 2.0 ⋛**⋥**⋈⋲ ⋛ 1.0 Computational modeling 4.0-CDRH2 camel **CDRH1** camel Bitscore 3.0 2.0 1.0 V_HH library with 33 30 31 32 optimized diversity G S Ν Α S S

Dataset: 208 VHH-antigen complex structures

57

Т

Which region of the V_HH is responsible for binding?

V_HH binding by region

- Calculated the computational binding energy of each residue along the V_HH and grouped by region
- CDRH3 dominates interaction with antigen
- CDRH1 and 2 contribute roughly the same amount of interaction on average

Which residues along the V_H H tend to contribute to binding?

Which residues along the V_H H tend to contribute to binding?

MERCK

Error bars = mean +/- SD

Which positions in the CDR1 and 2 can tolerate randomization in a library?

Which positions in the CDR1 and 2 can tolerate randomization in a library?

MERCK 14

Final yeast library designs

Library	Framework	CDR1+2 diversity	CDR1+2 Theoretical diversity	Transformed library size
Alp_LowDiv	Alpaca	Low	6.5 x 10⁵	1.2 x 10 ⁹
Hum_LowDiv	Humanized-4AA	Low	6.5 x 10 ⁵	1.5 x 10 ⁹
Alp_HighDiv	Alpaca	High	1.5 x 10 ¹²	0.9 x 10 ⁹
Hum_HighDiv	Humanized-2AA	Medium	1.6 x 10 ⁷	1.1 x 10 ⁹
Kruse ¹	Llama consensus	High	2.3 x 10 ¹⁰	1 x 10 ⁹
Synthetic CDR3 fragment used for internal libraries		¹ McMahon, C.,et al. (2018). <i>Nature Structural and Molecular Biology</i> , 25(3), 289–296. https://doi.org/10.1038/s41594-018-0028- 🚱 MERCK		

Final phage library designs

Library	Framework	CDRH3 Definition	Library Size
LD-01	Alpaca	Synthetic (6-10aa)	1.20E+11
LD-02	Alpaca	Synthetic (11-14aa)	2.10E+11
LD-08	Alpaca	Synthetic (15-18aa)	9.50E+10
LD-04	Alpaca	Natural/human	4.70E+09
LD-06	Humanized-2AA	Synthetic (6-10aa)	2.00E+11
LD-05	Humanized-2AA	Synthetic (11-14aa)	9.50E+10
LD-07	Humanized-2AA	Synthetic (15-18aa)	1.40E+11
LD-03	Humanized-2AA	Natural/human	6.20E+09

No CDR1+2 diversity incorporated in phage libraries

Abeta affinity from V_HH campaign

- 42 recombinant VHH produced from four libraries
 - Library Alp_HighDiv gave only reagent binders
- Affinity measured by ForteBio
- Protein produced for 33 clones, binding detected for 27
- Best VHH has affinity of 5 nM (Hum_HighDiv)

New Technologies

The Future of Protein Engineering

Our protein engineering workflow is approaching its limits, even with automation

Computational protein design and ultra HTP experimentation are transforming the experiments considered possible

Protein sequence design by conformational landscape optimization Norn, et al. PNAS 2021

Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics Fordyce Lab, Science 2021

Mass Activated Droplet Sorting

Mass Activated Droplet Sorting

ProMADS Setup

The Carterra LSA enables true High-Throughput Surface Plasmon Resonance (HT-SPR) analysis

- Screen more clones simultaneously in a single experiment
- Results in substantially less time
- •Use only a small amount of sample

Evolution of our interaction analysis capabilities

Pre-2023 state:

- Array of technologies spanning a wide affinity ranges
- Generally higher quality, multicycle, kinetics experiments utilized lower throughput instruments (Biacore T200)
- Octet HTX offered maximal throughput with 96 single point interactions however tighter $K_{\rm D}$ sensitivity of the instrument is limited
- Octet is main instrument for binning analysis however large matrix binning panels are challenging to run, consume reagent and requires highly manual characterization with outdated software

Post-2023 state:

- Array of technologies spanning a wide affinity ranges
- Higher guality, multicycle, kinetics experiments can be tailored to appropriate instrument based on throughput demands
- Carterra LSA offers maximal throughput capacity of 384 interactions with improved sensitivity range
- Carterra LSA is main instrument for classical and premix epitope binning analysis, large matrix binning panels are straightforward to set-up and data analysis is enabled with leading edge epitope binning analysis software

203 x 203 matrix binning experiment

- Mammalian expressed HT VHH-Fc discovered via phage utilized for direct coupled classical epitope binning expt. using pre-known binning controls
- Leveraged initial experiment to assess panel binding to 200nM Ag and regeneration conditions
- Executed full binning experiment, 203 x 203 (>5-day expt. run time)
- Entire run used ~15ug per VHH-Fc and ~350ug Ag to run experiment

Experimental Conditions

- Sensor chip: HC200M
- [Ligand] 10ug/mL direct amine coupled to sensor surface
- [Ag] is 200nM, monomeric protein
- [Analyte] 30ug/mL
- Regeneration 10mM Glycine 2.0, 30s pulse injection, x2
- Standard classical epitope binning settings (5 min Ag, 5 min mAb)

Data triaging resulted in final 54 x 54 bi-directional binning matrix

Excluded data

- Non-expressors
- Replicates
- Multiple Batches
- Non-binders
- Low Ag binding

Addition of uni-directional data to matrix reveals other *potential* binders

- Binders that have demonstrated binding to Ag were analyzed uni-directionally as analytes as they performed poorly as immobilized ligands
- Further analysis of the single functional bin control identified two new *potential* binders
- Carterra enabled the identification of 3 *potential* new functional binders out of 166 total binders for "challenging to find" epitope bin in <1 week with minimal setup time and minimal sample

BioPhi

1. Open-source platform for Antibody design and humanization

Visit BioPhi at <u>http://biophi.dichlab.org/</u> GitHub repository: <u>https://github.com/Merck/BioPhi</u> Prihoda, et al 2022

BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning

Where are we going next?

Even greater investment in automation, microfluidics, & machine learning

Our department is integrating all of these capabilities under 'one roof'

Recently hired several machine learning, data science, & automation positions in Discovery Biologics

plus additional positions in Computational & Structural Chemistry, Data Science, IT, and Software Engineering

Acknowledgements

Merck Discovery Biologics Merck Protein Engineering Merck Modeling & Informatics Merck Structural Chemistry

Discovery Biologics: SSF, Boston, and Cambridge

Professor Bob Kennedy

Thank you!

Twitter: @SynBioGrant Email: grant.murphy@merck.com