

High-throughput SPR assay for FcγR binding to drug candidates on the new Carterra LSA^{XT}

Zachary Fagiani Dragonfly Therapeutics

About me / About Dragonfly

- Graduated Northeastern with B.S. in Bioengineering in 2022
- Associate Scientist at Dragonfly for 2+ years
- Dragonfly founded in 2016
 - Multiple clinical-stage therapies using TriNKET and cytokine platforms
 - Partners include BMS, Merck, Gilead, AbbVie

Dragonfly THERAPEUTICS

Gib Outline

- Importance of FcγR characterization for Fc-containing molecules
- LSA^{XT} implementation for FcγR screening
- Human and cynomolgus assay design and results
- Comparison of LSA^{XT} to Biacore 8K
- Conclusions

Fc gamma receptor (FcγR) binding is a critical component in antibody mediated immune activity

- FcγRs are essential in ADCC, ADCP, and CDC activity.
- FcγR binding should be characterized for all Fc-containing molecules.

Receptor	FcγRI	FcγRII			FcγRIII		
Receptor		FcyRIIa	FcyRIIb	FcyRIIc	FcyRIIIa	FcyRIIIb	
Structure	γ chains					GPI anchor	
Signal	ITAM	ITAM	ITIM	ITAM	ITAM	-	
Polymorphism	-	R131H	I232T	Q57X	V158F	NA1, NA2, SH	
Affinity for IgG	High (10 ⁻⁸ –10 ⁻⁹ M)		Low (10 ⁻⁶ M)		Low (10 ⁻⁶ –10 ⁻⁷ M)		

Dragonfly THERAPEUTICS Forest-Nault et al. (Int J Mol Sci, 2021)

FcγR binding analysis is crucial in antibody and Fc-fusion therapeutic development

FcγR binding assessment provides critical information into wild-type or engineered Fc domains. Routine assessments include:

- **1.** Wild-type FcγR binding determination
- 2. Cross-reactivity to relevant species FcγRs
- 3. Impact of Fc mutations (Fc γ R silencing, enhancing, etc.)

Geometry Mutations augmenting effector function modulate binding affinity for multiple FcγRs

Jin the second			Effector I vs.	Function WT		Bir	nding Affin	ity vs. WT	
FcγR glycan	Fc Modification	ID	ADCC	ADCP	FcyRIIA ^H	FcyRIIA ^R	FcyRIIB	FcγRIIIA ^F	FcγRIIIA ^V
ALL AND THE ALL	S298A/E333A/K334A	AAA	t	n.d.	ţţ.	n.d.	11	tt.	Ť
	Afucosylation (Potelligent)	Potelligent	tt.	n.d.	n.d.	n.d.	n.d.	111	n.d.
ΓΟΥΚ	S239D/I332E	DE	tt.	t	n.d.	n.d.	111	111	1111
	S239D/A330L/I332E	DLE	111	Ť	n.d.	n.d.	111	111	tttt
	G236A	G236A	-	t	tt.	11	Ť	-	-
	G236A/S239D/I332E	ADE	Ť	Ť	tt.	111	111	111	111
	G236A/A330L/I332E	GAALIE	d.n.s.	n.d.	tt.	tt.	11	tt.	tt.
	G236A/S239D/A330L/I332E	GASDALIE	n.d.	n.d.	111	111	Ť	111	Ť
IgG1 Fc	F243L/R292P/Y300L/V305I/P396L	LPLIL	tt.	n.d.	††	Ť	Ť	111	111
	L235V/F243L/R292P/Y300L/P396L	VLPLL	Ť	n.d.	1	44	44	tt.	Ť

Hayes et al. (Journal of Inflammation Research, 2016)

Liu et al. (Antibodies, 2020)

Dragonfly THERAPEUTICS

Fc-containing biologics are a substantial and growing class of drugs

- 175+ antibody therapeutics approved or under regulatory review globally
- US market alone valued at \$180 billion (2021)
 - Compound annual growth rate of 14%

The Antibody Society (2023)

Why consider improving the FcγR characterization workflow at Dragonfly?

- FcγR characterization time:
 - Screening human/cyno FcγR panel on 8K takes one week
- User lab time:
 - Each day a new experiment must be set up
- Protein requirements:
 - Nearly 16mg of each antibody required
- Sensor chips:
 - 6 chips required per antibody

Could Carterra LSA^{XT} help with the FcγR workflow at Dragonfly?

LSA^{XT} demonstrates increased data resolution and reproducibility over LSA

THERAPEUTICS

*Data provided by Carterra

Gamma Series and Seri

- Biacore 8K provides high-resolution kinetics, but flow cell design limits ligand capacity to 8.
- Carterra LSA^{XT}'s flow cell design can capture 384 unique ligands with now improved sensitivity.

Similar assay conditions were established to directly compare between instruments

- Test trastuzumab (IgG1 mAb) binding against 11 FcγRs.
- Both instruments ran at 22°C with streptavidin-coated chips.
- All receptors are biotinylated and provided by ACRO Biosystems.
 Recentor Tested

- 100 - 100	DURALY 5000 ml 41 5000 ml 5 - 31	
700 000 mi 1000 mi 500 400 500 400 500 400 500 400 500 500 500 500 500 500 500 500		

Dragonfly

RAPEUTICS

Species	Receptor Tested
Human	CD16a (V & F)
Cynomolgus	CD16
Human	CD16b (NA1 & NA2)
Human	CD32a (H & R)
Human & Cynomolgus	CD32b
Human & Cynomolgus	CD64*
	*Performed on Biacore biotin

LSA^{XT} can capture full FcyR array at a consistent and low surface density

- 11 biotinylated receptors captured on SAHC30M sensor chip
- Standard deviation of capture response replicates \leq 15% (n=8)

Average capture levels of biotinylated FcyRs

THERAPEUTICS

Fc Gamma Receptor Affinity Characterization on LSA^{XT}

THERAPEUTICS

LSA^{XT} and 8K provide high-resolution sensorgrams

Dragonfly Weak i

Weak interaction

Strong interaction

LSA^{XT} and 8K produce similar affinities in FcγR SPR binding assays

THERAPEUTICS

LSA^{XT} and 8K produce similar on/off rates in trastuzumab FcγR binding assays

- Kinetic constants within 2-fold across instruments
- CD64 differences likely due to chip chemistry differences

<i>k</i> _a (1/Ms)			<i>k</i> _d (1/s)			
	Biacore 8K	Carterra LSA ^{XT}		Biacore 8K	Carterra LSA ^{XT}	
Hu CD16a V	(2.6 ± 0.6) x 10 ⁵	$(2.2 \pm 0.1) \times 10^5$	Hu CD16a V	(8.4 ± 1.1) x 10 ⁻³	$(9.4 \pm 0.3) \times 10^{-3}$	
Hu CD16a F	(1.1 ± 0.0) x 10 ⁵	(1.2 ± 0.2) x 10 ⁵	Hu CD16a F	$(2.8 \pm 0.0) \times 10^{-2}$	(4.4 ± 0.6) x 10 ⁻²	
Cy CD16	$(2.1 \pm 0.4) \times 10^5$	$(1.2 \pm 0.1) \times 10^5$	Cy CD16	$(1.2 \pm 0.2) \times 10^{-2}$	$(1.2 \pm 0.1) \times 10^{-2}$	
Hu CD64	$(7.7 \pm 0.1) \times 10^4$	(2.1 ± 0.2) x 10 ⁵	Hu CD64	$(1.5 \pm 0.1) \times 10^{-4}$	$(1.8 \pm 0.3) \times 10^{-4}$	
Cy CD64	$(1.1 \pm 0.0) \times 10^5$	(1.4 ± 0.1) x 10 ⁵	Cy CD64	(7.6 ± 0.5) x 10 ⁻⁵	(4.5 ± 0.6) x 10 ⁻⁵	

Dragonfly THERAPEUTICS

LSA^{XT} provides FcγR characterization with greater efficiency than 8K

	Biacore 8K	Carterra LSA ^{XT}		
Chip	6 total chips - \$3924	1 chip - \$1190		
Analyte	15.9 mg	2.1 mg		
# of experiments	6 separate experiments	2 combined experiments		
Analyst Time	9 hours	3 hours		
Replicates	4	32		
Cost/replicate	\$89.18	\$3.10		
Analyte/replicate	361.4 µg	5.5 µg		

- Carterra LSA^{XT} can provide highly accurate and precise FcγR data using less overall analyte than Biacore 8K.
- Similar kinetic rate constants and K_D values were recorded between instruments.
- LSA^{XT} can perform FcγR assay faster and cheaper:
 - 1. Requires 7.5x less analyte
 - 2. Saves 6+ hours of analyst time
 - 3. Saves ~\$3,000 in chip costs
 - 4. Produces 8x as many replicates

Acknowledgements

Carterra

- Noah Ditto <u>NDitto@Carterra-Bio.com</u>
- Rebecca Rich <u>RRich@Carterra-Bio.com</u>

ACRO Biosystems

• Larry Yu – <u>Larry.Yu@ACROBiosystems.com</u>

Dragonfly Therapeutics

• Dan Fallon

Dragonfly THERAPEUTICS

Reference slides

FcyRs produced and provided by ACRO Biosystems

Target		Cat No.	Lot No.	Aliquot size
huCD16a V176	FcγRIIIa V176	CDA-H82E9	BV1899-21CRF1-16N	25 µg
huCD16a F176	FcyRIIIa F176	CDA-H82E8	BV1898-21BRF1-12S	25 µg
cyCD16	FcγRIII	FC6-C82E0	BV2520-79XF1-12P	25 µg
huCD16b NA1	FcγRIIIB	CDB-H82E4	BV2424-215KF1-12V	25 µg
huCD16b NA2	FcγRIIIB	CDB-H82Ea	BV2381-224XF2-163	25 µg
huCD32aH	FcγRIIaH	CDA-H82E6	BV1896-222QF1-13V	25 µg
huCD32aR	FcyRllaR	CDA-H82E5	BV5439A-21BAF1-14Y	25 µg
huCD32b	FcγRIIB	CDB-H82E0	BV1900-2176F1-15H	25 µg
cyCD32b	FcγRIIB	CDB-C82E4	BV3105-93CF1-Y7	25 µg
huCD64	FcγRI	FCA-H82E8	CBV419P1-207EF1-14Y	25 µg
cyCD64	FcγRI	FCA-C82E8	CBV312P1-217FF1-12V	25 µg

The Antibody Society. Therapeutic monoclonal antibodies approved or in regulatory review. (June 2023); <u>www.antibodysociety.org/antibody-therapeutics-product-data</u>

Forest-Nault, C., Gaudreault, J., Henry, O., Durocher, Y., & De Crescenzo, G. (2021). On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcyR Interactions. *International Journal of Molecular Sciences*, *22*(12), 6616. <u>https://doi.org/10.3390/ijms22126616</u>

Hayes, J. M., Wormald, M. R., Rudd, P. M., & Davey, G. P. (2016). Fc gamma receptors: Glycobiology and therapeutic prospects. *Journal of Inflammation Research*, *9*, 209–219. <u>https://doi.org/10.2147/JIR.S121233</u>

Liu, R., Oldham, R. J., Teal, E., Beers, S. A., & Cragg, M. S. (2020). Fc-Engineering for Modulated Effector Functions—Improving Antibodies for Cancer Treatment. *Antibodies*, *9*(4), Article 4. <u>https://doi.org/10.3390/antib9040064</u>

