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Abstract 

Generative AI has the potential to redefine the process of therapeutic antibody discovery. In this 
report, we describe and validate deep generative models for the de novo design of antibodies 
against human epidermal growth factor receptor (HER2) without additional optimization. The 
models enabled an efficient workflow that combined in silico design methods with high-
throughput experimental techniques to rapidly identify binders from a library of ~106 heavy chain 
complementarity-determining region (HCDR) variants. We demonstrated that the workflow 
achieves binding rates of 10.6% for HCDR3 and 1.8% for HCDR123 designs and is statistically 
superior to baselines. We further characterized 421 diverse binders using surface plasmon 
resonance (SPR), finding 71 with low nanomolar affinity similar to the therapeutic anti-HER2 
antibody trastuzumab. A selected subset of 11 diverse high-affinity binders were functionally 
equivalent or superior to trastuzumab, with most demonstrating suitable developability features. 
We designed one binder with ~3x higher cell-based potency compared to trastuzumab and 
another with improved cross-species reactivity1. Our generative AI approach unlocks an 
accelerated path to designing therapeutic antibodies against diverse targets.  

                                                           
1 We have open sourced the SPR binding affinity data as well as the functionality, developability, and 
cross-reactivity data from this study: https://github.com/AbSciBio/unlocking-de-novo-antibody-design. 
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Introduction 

Antibody drug development often begins with isolating initial leads by screening large libraries of 
random antibody variants against a target antigen. Techniques such as phage display1, yeast 
display2, immunization strategies, or single B-cell sequencing3 are typically employed to 
generate diverse binders. Further antibody optimization refines target affinity by focusing on the 
variable domains, which directly interact with antigens and are the key determinants of antibody 
affinity and specificity for targets4-6. Overall, these methods are laborious and often produce 
sub-optimal leads that fail during early-stage characterization. Computational approaches to de 
novo antibody design, that is, design against never-before-seen targets, have the potential to 
drastically reduce the time and resources necessary for therapeutic antibody development. The 
application of generative artificial intelligence (AI) methods for de novo antibody design is 
compelling, given the availability of large protein sequence and structure databases that can be 
leveraged for model training7-19. 

Deep learning models have the potential to design antibodies with desirable properties18, 20-25. 
Several works have succeeded in optimizing antibodies using supervised learning 
approaches26-29. While different methods for AI-based de novo design of antibodies have been 
proposed with compelling in silico results, none have been coupled with high-throughput wet-lab 
validation18, 20-25. We exploited recent advances in DNA synthesis, recombinant antibody 
expression, fluorescence-activated cell sorting (FACS), high-throughput surface plasmon 
resonance (SPR), and next-generation sequencing (NGS) to experimentally screen and validate 
large libraries of antibody sequences. Combining these high-throughput techniques into 
optimized screening workflows of antibody designs obtained from generative AI could bridge the 
gap between computational antibody design and experimental validation.  

Here, we developed generative AI models to produce antibody binders in a single round of 
design without further optimization cycles. Our models were trained on antibody-antigen 
complex structures and were constrained by removing known similar complexes to evaluate 
their capabilities for unbiased zero-shot de novo design. Zero-shot design, or deployment of 
models that have never seen a binder to a target antigen, is a relevant therapeutic problem 
based on its potential to unlock binder design against a broad set of novel targets without the 
need for further optimization. To assess the capability of our zero-shot de novo antibody design 
models, we used them to design heavy chain complementary determining regions (HCDRs) 
using trastuzumab and its target antigen HER2 as a model system30, 31. Following binder 
screening using our FACS-based Activity-specific Cell-Enrichment (ACE) AssayTM and 
experimental validation using SPR, we identified diverse anti-HER2 binders with low nanomolar 
affinities, unique sequences, and distinct HCDR conformations. Finally, we reformatted a subset 
of designed binders as monoclonal IgG1 antibodies (mAbs) to assess potency and 
developability. In most cases, the high-affinity binders performed similarly to or, in some cases, 
better than trastuzumab. Taken together, this work paves the way toward fully de novo 
therapeutic antibody design using zero-shot generative AI to facilitate the development of 
biologics. 
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Results 

Generative AI models for de novo antibody design built into an end-to-end screening and 

validation workflow  

To assess the ability of our generative AI models to de novo design antibodies targeting specific 
antigens, we generated HCDR3 and HCDR123 sequences in a zero-shot fashion6. We followed 
the zero-shot definition as provided by language models GPT-332 and ESM-1v33. We selected the 
therapeutic antibody trastuzumab, which targets HER2, as a template for the de novo design of 
HCDR sequences. The modeled HCDRs were conditioned on the HER2 antigen backbone 
structure derived from PDB:1N8Z (Chain C)34, trastuzumab¶V framework sequences, and the 
trastuzumab-HER2 epitope. Neither the HCDRs nor the LCDRs of trastuzumab were provided as 
input to the models. Models were trained on the Structural Antibody Database (SAbDab)11. Any 
antibody in complex with the target antigen, HER2, or its homologs was removed from the training 
set. This was done by clustering the antibody-antigen complexes at 40% antigen sequence 
identity (Methods). We predicted the structure of the trastuzumab-HER2 complex using our 
structure design model, MaskedDesign. We then provided the predicted structure to our inverse 
folding model, IgMPNN, which designed HCDR sequences (Fig. 1, Methods). Sequence loss 
(model likelihood) was computed for the designed CDRs using IgMPNN and the predicted 
complex structure to obtain a score for ranking, according to which the top k sequences were 
sampled for subsequent wet-lab validation (Methods).  

Optimal HCDR lengths are unknown a priori, therefore, we sampled sequences with HCDR3 
lengths of 9-17 residues, which represent 74.5% occurrence in the Observed Antibody Space 
(OAS)10. HCDR3 lengths were sampled according to the length distribution in OAS (Methods, 
Supplementary Table 1). We sampled HCDR1 and HCDR2 sequences consisting of 8 residues, 
as these are the most frequent lengths of HCDR1 (85.4% occurrence) and HCDR2 (64.8% 
occurrence) in OAS, and the lengths of trastuzumab's HCDR1 and HCDR2 as defined by 
IMGT35. 

We leveraged our FACS-based ACE AssayTM (Methods) to screen fragment antigen-binding 
(Fab) libraries containing ~106 variants. In this assay, cloned antibody variants were evaluated 
for their antigen binding through intracellular expression in E. coli. The cells underwent 
permeabilization, staining for antibody expression and antigen binding, and isolation by FACS 
based on antigen-binding signal. NGS analysis was performed to compare the relative 
abundance of individual variants in the FACS-isolated populations to that of the original library. 
The significantly enriched variants were identified as the likely binders (Supplementary Fig. 1). 
To quantitatively validate the likely binders, we evaluated the performance of the ACE AssayTM 
on a set of antibodies that were confirmed to be anti-HER2 binding or non-binding using SPR 
(Methods, Supplementary Fig. 2). Using this approach, we found that the ACE AssayTM could 
classify SPR-measured positive and negative controls with nearly 95% precision and > 95% 
recall (Supplementary Fig. 1, Supplementary Tables 2-3). This robust workflow enabled the 
screening of a large variant population by the ACE AssayTM with high precision (Fig. 1). 
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Zero-shot de novo designs outperform biological baselines 

We compared the binding rates of our generative AI models to relevant biological baselines 
derived by sampling sequences from OAS and SAbDab. We screened over 100,000 baseline 
sequences, including all HCDR3s and HCDR123s from SAbDab that matched appropriate 
length constraints, 50,000 HCDR3s and HCDR123s from OAS, and 10,000 HCDR123s from 
OAS which contained the same J gene as trastuzumab (Methods, Supplementary Table 4). Our 
models achieved a top 1,000 binding rate of 10.6% (HCDR3 design) and 1.8% (HCDR123 
design), significantly outperforming the random OAS baseline by approximately 4-fold and 11-
fold, respectively (Table 1). The models significantly outperformed the other baselines as well. 

The inverse folding model likelihoods were positively associated with binding rates, showing that 
sequences can be effectively prioritized in an unsupervised zero-shot manner. The designed 
sequences had increased binding rates when ranking by model likelihood, indicating that higher 
likelihood designs include more binders (Supplementary Tables 5-6). In fact, the top 100 binding 
rate was approximately 2-fold higher than the top 10,000 binding rate for both HCDR3 and 
HCDR123 design. 

Furthermore, to show that the models meaningfully utilized antigen information, we designed 
off-target HCDRs conditioned on one of three incorrect antigens: rat HER2, human HER3, or 
human VEGF, instead of human HER2. We observed a significant performance decrease, with 
binding rates dropping greater than 3-fold, when designing sequences with incorrect antigens as 
input to the models (Table 1) and screening against human HER2. 

Generative models produce diverse binders 

Analysis of the SPR-validated zero-shot AI designs (Fig. 2A) showed a binding affinity range to 
HER2 of over three orders of magnitude, with 71 exhibiting binding affinities less than 10 nM 
(Fig. 2B). Three binders showed tighter binding to HER2 than trastuzumab, with one binder 
displaying sub-nanomolar affinity. The HCDR3 length range was 11-15 residues 
(Supplementary Fig. 3A), a difference of ± 2 from trastuzumab. The HCDR3 sequences were 
also diverse from trastuzumab with edit distances of 2-12 (Fig. 2C). Interestingly, we detected 
binders that exhibited affinity less than 10 nM across all edit distances, suggesting paratopes 
similar to trastuzumab¶V were not required for high affinity. Additionally, we observed higher 
diversity in HCDR3 centers, which correspond to the D gene, compared to the more conserved 
flanking V and J germline genes, indicating our models learned principles seen in natural 
immune repertoires (Fig. 2C)36. The binders were also dissimilar from one another, with a mean 
pairwise edit distance of 7.7 (Fig. 2D, Supplementary Fig. 3B). Despite the high sequence 
diversity, one potential explanation of the models¶ success is the simple reproduction of training 
examples. The binders were distinct from any HCDRs in the training set and SAbDab (Fig. 2D, 
Supplementary Fig. 3C). Furthermore, when the binders were compared against OAS, an 
exponentially larger antibody database, some binders retained similarity to natural HCDRs (Fig. 
2E) while most were distinct. These results indicate that the models were able to generate 
biologically relevant yet diverse HCDRs. 
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Binders adopt variable binding mechanisms 

We predicted structures for a diverse subset of the HCDR3 variants to better understand the 
structural basis of HER2 recognition (Methods). To this end, we built structural models of eight 
HER2-bound HCDR3 variants using the trastuzumab-HER2 Fab complex (PDB:1N8Z)34 as a 
starting template (Table 2, Supplementary Fig. 4). We performed locally constrained backbone 
geometry and side chain rotamer optimization followed by complex relaxation to correct global 
conformational ambiguities, steric clashes, and sub-optimal loop geometry37.  

Alignment of the designed HCDR3 regions with the trastuzumab-HER2 complex revealed a 
dynamic ensemble of conformations (Fig. 3, Supplementary Fig. 5). Antibody-aligned HCDR3 
loop structural differences were broad, with local RMSD ranges of 1.1-6.8 Å when aligned 
across all HCDR3 atoms (Table 2). Despite sequence diversity, the eight de novo structural 
models were globally similar to trastuzumab with an all-atom HCDR3 RMSD range of 1.9-2.4 Å 
(Supplementary Fig. 5). In some variants, residues close to the HCDR3 sequence showed slight 
rotamer differences to account for longer loops or steric clashes from residues with larger side 
chains (Supplementary Fig. 6-7). Close analysis of the spatial orientation of the side chain 
conformations revealed identical side chains at five discrete spatial locations (Fig. 3). Two of 
these locations correspond to IMGT residue positions R106 and Y117 of trastuzumab, which 
are highly conserved in many antibodies38. In contrast, there was physiochemical conservation 
in positions W107, G109, and Y113 of trastuzumab, contributing to its paratope30. Although 
conserved spatially, these side chains originated from different positions, highlighting that 
conformational flexibility may be required for orienting key paratope residues. 

Despite binding to the identical epitope, each variant exhibited distinct binding modes. Novel 
interactions not observed in the trastuzumab-HER2 complex were mostly formed between the 
designed HCDR3s and two HER2 domain IV surfaces (Supplementary Fig. 6-7). To further 
decipher binding determinants, we calculated the surface area buried by each HCDR3 variant 
when bound to HER2 (denoted as Interface, Supplementary Table 7). Several variants showed 
larger binding interface areas than trastuzumab. Interestingly, no significant correlation was 
observed between binding interface area and binding affinity. In addition, we calculated the 
grand average of hydropathy values (GRAVY)39 of each HCDR3 variant, a metric of their 
collective hydrophobic properties. We observed no significant correlation between affinity and 
hydropathy (Supplementary Table 7). Combined, these results suggest that the binding affinities 
of the designed HCDR3s were intrinsic to the sequences and were not driven by common 
physicochemical mechanisms, such as a potential bias towards increased hydrophobicity 
(Supplementary Table 7). 

De novo designed anti-HER2 binders display similar functional properties as 

trastuzumab 

We explored the functionality and developability of 11 high affinity de novo designs. These 
variants were selected based on sequence diversity and biophysical properties and constrained 
to an affinity cutoff of < 10 nM. Trastuzumab served as a control. The variants were expressed 
as full-length monoclonal antibodies (mAbs) in mammalian CHO-K1 cells. The titers were 
equivalent to the trastuzumab titer; therefore, no sequence liabilities affected cellular 
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expression. The mAbs were purified and analytical assays were conducted to assess 
homogeneity, purity, and concentration. Of the 11 variants, only one failed our > 97% purity 
cutoff by size exclusion chromatography (Supplementary Table 8). Intact mass by mass 
spectrometry showed uniform post-translational modifications in all variants. Biophysical 
characterization indicated all mAbs were monodispersed and had melting temperatures below 
trastuzumab but above the therapeutic cutoff of 60°C40 (Supplementary Table 8). Furthermore, 
mAb and Fab binding affinities were correlated (Supplementary Table 9), indicating a successful 
conversion into full-length mAbs, a limitation often observed with traditional techniques41.     

Next, we probed the developability properties of each mAb using an array of assays that 
analyze hydrophobicity, self-aggregation, and polyspecificity (Methods, Table 2, Supplementary 
Fig. 8-11). Of the 11 mAbs, 7 displayed performances above the quality thresholds40. Only two 
mAbs displayed systematic failure across two or more assays. Neonatal Fc receptor (FcRn) 
chromatography is used as an initial in vitro method for evaluating the pharmacokinetic (PK) 
properties of antibodies. A reverse correlation between FcRn retention time and antibody half-
life is typically expected42. Four of the 11 mAbs displayed subpar FcRn retention times, which 
could be attributed to poor biophysical properties such as self-aggregation (Table 2). These 
findings were expected since antibody variable domains have been previously shown to 
influence FcRn binding by IgGs43.  

The mAb specificities were analyzed in a cross-reactivity SPR assay with HER2 paralogs and 
orthologs as antigens (Supplementary Fig. 12A). The de novo designed mAbs displayed similar 
species cross-reactivity profiles to trastuzumab, binding to human, cynomolgus, and canine 
HER2, with Candidate 2 outperforming all others, including trastuzumab (Supplementary Table 
10). Non-specific binding was neither observed to mouse HER2 nor to the human paralogs 
HER1, HER3, and HER4 (Supplementary Fig. 12A, Supplementary Table 10). The candidate 
mAbs were tested for cell-surface antigen binding and antibody-dependent cell cytotoxicity 
activity using the HER2+ SK-OV-3 ovarian cancer cells (Supplementary Fig. 12B). We observed 
no significant binding differences between the de novo-designed mAbs and trastuzumab, except 
for Candidate 2 which displayed a ~3-fold higher EC50 in the HER2+ cell surface binding assay. 
Compared to trastuzumab, similar or better cross-reactivity and functional profiles of the de 
novo designs indicate our approach enables diversification of mAbs optimized for developability 
and biological function (Table 2). 

Distinct interactions between HCDRs and epitope control functional properties  

Improved cell-surface binding and cross-reactivity profiles could be linked to unique epitope 
interactions of the de novo HCDR3 designs. We utilized a high-throughput site-directed 
mutagenesis approach to map the binding contributions of each epitope residue to each mAb. 
We used a domain IV HER2 fragment as an epitope template and created alanine substitutions 
at residues within 5 Å of the paratope (Fig. 4A). The mutants were screened for mAb binding 
using an SPR assay, followed by ranking based on whether they were critical, partially critical, 
or not critical for binding (Methods). Construction of discrete epitope maps revealed that the 
mAb variants formed a network of unique interactions unrelated to trastuzumab, except for one 
epitope map (Supplementary Table 11). Interestingly, some HCDR3 variants formed critical 
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interactions dominated by the light chain CDRs (Supplementary Table 11), implying significant 
conformational changes in the paratope and epitope facilitated novel interactions. Surface 
representations of epitope maps further highlighted similarities and differences in epitope 
interactions by each mAb, but also exemplified discrete epitope hotspots that influence function 
(Supplementary Fig. 13). The function of Candidates 2 and 3, which showed superior cell 
surface-binding potency and cross-reactivity, respectively, could be mapped to distinct hotspots 
based on differences to trastuzumab. Candidate 2 had a contribution switch at adjacent epitope 
residues K591 and D592, likely forming a hotspot for increased potency (Fig. 4B). Cynomolgus 
cross-reactivity was linked to distal regions of the HER2 domain IV epitope that mostly interact 
with the trastuzumab light chain (Fig. 4A). Candidate 3 led to considerable contribution changes 
in epitope residues F595, M611, and I613, likely forming a hotspot for cross-reactivity, because 
they are structurally close to the two polymorphic differences between cynomolgus and human 
HER2 (Fig. 4B, Supplementary Table 11). Together, these results highlight the versatile, 
functional properties that can be obtained from diverse HCDR3 designs (Fig. 4C). 

 

Discussion 

A particularly difficult aspect of antibody drug design is the initial step of lead candidate 
identification due to the labor-intensive and uncontrolled nature of traditional discovery and 
screening methods1-6. Computational antibody design strategies offer alternative solutions18, 20-

23. Of particular interest is epitope-specific binder design that can be achieved under controllable 
in silico settings and be subsequently validated experimentally. Here, we demonstrated the 
potential of zero-shot generative AI models to reduce the need for repeated library screening or 
animal immunization, which yield leads that typically need optimization and are not necessarily 
epitope-specific. Our study yielded novel antibodies that bound human HER2 with other 
characteristics comparable to and, in some cases, superior to the therapeutic antibody 
trastuzumab. In addition, our models generated de novo HCDR3 and HCDR123 designs with 
significantly greater efficiency than relevant biological baselines, enabling a larger and more 
diverse pool of leads for candidate selection. Importantly, the AI-generated sequences were 
distinct from sequences in the training set and the vast majority of OAS suggesting the models 
are not simply memorizing the training data. Structural modeling of a subset of binders revealed 
high backbone conformational variability, but preservation of important positional interactions 
with the HER2 antigen. Altogether, the observed high diversity in the sequences and 
conformations of the antigen-binding variable regions indicates that our models recapitulate 
natural immunity principles while generalizing to new sequences. 

Cell expression of high-affinity anti-HER2 antibodies incorporating de novo HCDR3 designs 
resulted in functional and developability properties similar to or better than trastuzumab. These 
were linked to HER2 epitope hotspots that control binding potency and cross-reactivity. We 
found that our designed antibodies form unique interactions with epitope residues distinct from 
the overall interaction map of trastuzumab. In conclusion, the performance of our models 
indicates a propensity to design CDRs with favorable antibody-like biophysical properties and 
targeting of the selected epitope, enabling the mitigation of downstream developability risks. 
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Building on the demonstrated progress, future work could extend generative AI models to 
enable the de novo design of all CDRs and framework regions against more antigens and 
epitopes. If generalizable, the epitope-specific targeting of antigens of interest during antibody 
design can improve efficacy or enable novel pharmacology. In addition to further diversifying 
possible binding solutions, novel frameworks may result in antibodies with better clinical-grade 
properties, including developability and functionality. In conclusion, generative AI models 
combined with high-throughput wet-lab screening capabilities and followed by the selection of 
final drug candidates has the potential of unlocking new capabilities in the field of therapeutic 
antibody design. 
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)LJ�����=HUR�VKRW�JHQHUDWLYH�$,�PRGHOV�IRU�GHVLJQLQJ�GH�QRYR�DQWLERGLHV��'HHS�OHDUQLQJ�
PRGHOV�WUDLQHG�RQ�DQWLERG\�DQWLJHQ�LQWHUDFWLRQV�FRPELQHG�ZLWK�KLJK�WKURXJKSXW�ZHW�ODE�
H[SHULPHQWDWLRQ�HQDEOHG�WKH�GHVLJQ�RI�ELQGHUV�WR�DQ�DQWLJHQ�QHYHU�EHIRUH�VHHQ�E\�WKH�PRGHOV�
ZLWKRXW�IXUWKHU�DIILQLW\�PDWXUDWLRQ�RU�OHDG�RSWLPL]DWLRQ��0RGHO�DUFKLWHFWXUHV�DUH�GHSLFWHG�LQ�
GDVKHG�ER[HV��0RGHO�LQSXWV�DQG�RXWSXWV�DUH�GHSLFWHG�ZLWK�JUD\�ER[HV�LQ�WKH�EDFNJURXQG��,QSXWV�
WR�WKH�PRGHO�FRQVLVWHG�RI�WDUJHW�DQWLJHQ�VWUXFWXUH��WDUJHW�HSLWRSH�UHJLRQ��DQG�DQWLERG\�
IUDPHZRUN�VHTXHQFHV��1RQH�RI�WKH�&'5�VHTXHQFHV�ZHUH�SURYLGHG�WR�WKH�PRGHOV�DV�LQSXW��
,QSXWV�DUH�SURFHVVHG�LQWR�LQYDULDQW�LQSXW�UHSUHVHQWDWLRQ�DQG�SDVVHG�LQWR�WKH�0DVNHG'HVLJQ�
PRGHO�ZKLFK�SUHGLFWV�D�GRFNHG�DQWLERG\�DQWLJHQ�FRPSOH[�VWUXFWXUH��VXE�ILJXUH�LQVSLUHG�E\�
0F3DUWORQ�HW�DO������7KH�SUHGLFWHG�FRPSOH[�LV�SDVVHG�WR�,J0311�ZKLFK�GHVLJQV�&'5V��VXE�
ILJXUH�LQVSLUHG�E\�'DXSDUDV�HW�DO������'H�QRYR�GHVLJQHG�+&'5V�DUH�RUGHUHG�DV�D�OLEUDU\�DQG�DUH�
VFUHHQHG�LQ�YLWUR�IRU�ELQGLQJ�  
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635���$��3ORW�RI�ELQGHU�FRXQW�YV�635�PHDVXUHG�ELQGLQJ�DIILQLW\�RI�GH�QRYR�GHVLJQHG�DQWL�+(5��
ELQGHUV��)DE�IRUPDW���7KH�UHG�GRWWHG�OLQH�UHSUHVHQWV�WKH�ELQGLQJ�DIILQLW\��െ ஽ሻܭଵ଴ሺ݃݋݈ ሺܯሻሻ�RI�
WUDVWX]XPDE���%��635�PHDVXUHG�ELQGLQJ�DIILQLWLHV�RI�GH�QRYR�GHVLJQHG�ELQGHUV��7KH�UHG�GRWWHG�
OLQH�UHSUHVHQWV�WKH�ELQGLQJ�DIILQLW\�RI�WUDVWX]XPDE��%ODFN�GDVKHV�UHSUHVHQW�WKH�PHDQ�IRU�HDFK�
HGLW�GLVWDQFH�ELQ��(GLW�GLVWDQFHV�UDQJH�IURP���PXWDWLRQV��������VHTXHQFH�LGHQWLW\��WR����
PXWDWLRQV�������VHTXHQFH�LGHQWLW\���(DFK�GRW�UHSUHVHQWV�WKH�PHDQ�DIILQLW\��െ݈݃݋ଵ଴ሺܭ஽ሻ ሺܯሻሻ�
DFURVV�UHSOLFDWHV���&��/RJR�SORW�RI�+&'5�V�RI�����635�YDOLGDWHG�ELQGHUV�FRPSDUHG�WR�
WUDVWX]XPDE�+&'5��DW�WKH�ERWWRP��*UHDWHU�GLYHUVLW\�LV�REVHUYHG�LQ�WKH�FHQWHUV�RI�WKH�GHVLJQHG�
+&'5�V���'��0LQLPXP�HGLW�GLVWDQFH�RI�ELQGHUV�WR�WUDLQLQJ�GDWD�+&'5�V��PLQLPXP�RI����
PD[LPXP�RI����PHGLDQ�RI����PHDQ�RI�������������6'����(��0LQLPXP�HGLW�GLVWDQFH�RI�ELQGHUV�WR�
+&'5�V�IRXQG�LQ�2$6��PLQLPXP�RI����PD[LPXP�RI����PHGLDQ�RI����PHDQ�RI�������������6'���
���������RXW�RI������RI�WKH�+&'5��GHVLJQV�DUH�IRXQG�LQ�2$6� 
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+(5��VWUXFWXUH��3'%��1�=��ZLWK�GH�QRYR�GHVLJQHG�ELQGHU�+(5��FRPSOH[HV�VKRZV�
FRQIRUPDWLRQDO�GLIIHUHQFHV�LQ�WKH�+&'5��EDFNERQH��0DLQ�FKDLQ�EDFNERQH�WUDFHV�DUH�
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FRQWDFW�WKH�KHDY\�FKDLQ�DUH�XQGHUOLQHG��5HVLGXH�SRVLWLRQV�WKDW�GLIIHU�EHWZHHQ�KXPDQ�DQG�
F\QRPROJXV�HSLWRSH�DUH�FRORUHG�F\DQ��+HDY\�FKDLQ�DQG�OLJKW�FKDLQ�&'5V�DUH�FRORUHG�UHG�DQG�
JUD\��UHVSHFWLYHO\���%��6XUIDFH�UHSUHVHQWDWLRQ�RI�WKH�HSLWRSH�PDSV�RI�WUDVWX]XPDE��KLJK�SRWHQF\�
FDQGLGDWH����DQG�PRVW�FURVV�UHDFWLYH�FDQGLGDWH����5HVLGXH�VXUIDFHV�DUH�FRORUHG�DFFRUGLQJ�WR�
WKHLU�FRQWULEXWLRQV�WR�ELQGLQJ�LQ�WKH�ILJXUH�OHJHQG��+RWVSRW�UHVLGXHV�WKDW�FRQWULEXWH�WR�IXQFWLRQ�
DUH�KLJKOLJKWHG���&��6XPPDU\�RI�IXQFWLRQDO�SURSHUWLHV�RI�GHVLJQHG�P$EV� 
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Tables 

 

Table 1. Binding rates of AI de novo designs using correctly matched antigen (human 

HER2) as input vs. incorrect antigens (rat HER2, HER3, VEGF) as input and compared to 

biological baselines (OAS, OAS-J, SAbDab). For AI designs, the top 1,000 sequences by 
model likelihood are tested experimentally. AI designs with the correct antigen outperform all 
other strategies (indicated with * and bold; 2-VLGHG�)LVKHU¶V�H[DFW�p < 2 x 10-4, for all 
comparisons expect human HER2 vs. rat HER2 on HCDR123 with p = 0.0078). 

Method Binding Rate (%) 

HCDR3 HCDR123 

De novo (Human HER2) 10.6* 1.8* 

Incorrect Antigen (Rat HER2) 3.3 0.6 
Incorrect Antigen (Human HER3) 2.4 0.2 
Incorrect Antigen (Human VEGF) 2.5 0.0 
OAS 2.77 0.17 
OAS-J 5.41 0.32 
SAbDab 3.26 0.07 

 

Table 2. Binding and functional determination in cellular contents, developability and 

predictive pharmacokinetics of antibody candidates. Results for all 11 AI-designed antibody 
candidates for functional assessment by cell surface binding and ADCC activity in cell-based 
assays, developability by AC-SINS, HIC and polyspecificity, and predictive pharmacokinetics by 
FcRn chromatography. NT = not tested. Bolded values indicate those that exceed developability 
cutoffs for each assay. 

Candidate 
HCDR3 

sequence 

Cell surface binding 

(EC50, pM) 

ADCC 

(EC50, pM) 

AC-SINS 

(nm shift) 

HIC 

(Relative RT) 

Polyspecificity FcRn  

chromatography  

(RT, min) 

Insulin 

(score) 

DNA 

(score) 
1 TRYFFNGWYYFDV 87.4 53.8 2.4 1.21 0.517 0.175 28.13 
2 ARYYYGFYYFDY 33.2 14.6 3.1 1.11 0.176 0.127 26.98 
3 ARWGNYYYYMDY 122.2 77.9 9.1 1.27 0.205 0.132 29.79 

4 ANDIYIQGYDLNR 105.7 58.7 1.8 1.14 0.168 0.101 27.35 
5 ARYYGYGGYYFDY 107.4 46.5 2.4 1.09 0.250 0.122 27.31 
6 ARWGGDFYAMDY 78.1 34.8 0.4 1.05 0.187 0.122 26.74 
7 ARWYGYGGYYFDY 87.1 57.7 4.4 1.16 0.175 0.133 29.56 

8 ARYGYAPGFYYMDV 103.4 62.8 3.1 1.14 0.187 0.126 27.50 
9 TRWGGYYYFDY 104.8 50.2 9.1 1.21 0.200 0.121 29.10 

10 APYGPGYWYGV 99.8 50.1 -0.9 1.16 0.138 0.125 28.06 
11 ARYYYDYYYYFDY 128.1 48.8 5.1 1.56 0.170 0.124 27.61 

Trastuzumab SRWGGDGFYAMDY 110.7 57.0 0.4 1.01 0.195 0.121 26.74 
Herceptin SRWGGDGFYAMDY 89.5 49.2 NT NT NT NT 26.86 
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Methods 

Antibody Numbering and CDR Definitions 
IMGT numbering and CDR definitions are used throughout this work1. 

In Silico Binder Design 
We designed sequences in silico through a two-step process. In the first step, MaskedDesign, 
our structure design model, was given the antigen sequence and structure, the position of the 
epitope residues on the antigen, and the antibody framework sequences. MaskedDesign 
predicted the 3D backbone structure of a bound antibody-antigen complex. This predicted 
complex structure was then given to IgMPNN, our inverse folding model. IgMPNN predicted 
HCDR sequences that will form the given complex, which are our designed sequences.  For 
each designed sequence, we computed the sequence loss (model log-likelihood) using IgMPNN 
and the predicted backbone complex structure as a measure of binding likelihood. Finally, we 
ranked sequences using these scores and selected the top ݇ sequences for in vitro validation. 

Structure Design Model (MaskedDesign) 

MaskedDesign is similar to the model described in McPartlon et al2. 

Model Inputs 

MaskedDesign took an annotated structure as input. During training, we provided: 

x The sequence and the backbone coordinates of the antigen. 
x A binary mask indicating the epitope residues. 
x The sequence of the heavy chain of the antibody (backbone atom coordinates and the 

sequences of the CDRs were designed and were masked out). 
x The sequence of the light chain of the antibody, if a light chain exists (backbone atom 

coordinates and the sequences of the CDRs were designed and were masked out). 

From this input, we computed residue and pairwise features. 

Residue Features 

x Residue type: One-hot sequence encoding for the antigen and antibody chains with 20 
tokens for natural amino acids and a <mask> token for masked sub-sequences and 
missing values. 

x Chain encoding: We enumerated the protein chains in the structure and one-hot 
encoded the values for each residue. 

x Epitope: Binary (0/1) tensor indicating the sampled epitope residues.  
x Dihedral angle encoding: We calculated the dihedral angles along the backbone of 

each chain (that did not have its coordinates masked). We then binned the angles into 
18 equidistant 20° bins, along with bins for masked values or missing values, and 
calculated a one-hot encoding of these bins. If the coordinates of residue ݅ are masked, 
then the angles ߶௜ିଵ and ߰௜ାଵ are masked. 
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Pairwise Features 

x Relative sequence separation: We calculated the signed distance between each pair 
of residues within a chain (the number of residues between them, positive if the first 
residue is downstream of the second one). We then binned the values into 29 bins: 14 
positive bins (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 10-12, 12-15, 15-20, 20-30, and > 30); 14 
negative bins matching the positive bins; and a bin for the value 0, along with a bin for 
masked values. We then calculated a one-hot encoding of these bins. 

x Pairwise distance encoding: For each pair of residues whose coordinates were not 
masked, we calculated the distances between the ߙܥ and all four backbone atoms; we 
then binned the calculated distances into seven bins (< 2 Å, 2-4 Å, 4-6 Å, 6-8 Å, 8-10 Å, 
10-12 Å, and > 12 Å). Finally, we calculated a one-hot encoding of these bins. 

x Pairwise interaction flag encoding: Binary (0/1) tensor indicating if the two residues 
were in contact (ߙܥ atoms are within 10 Å).  

o Note: This is an optional feature that is not used for the design model (neither in 
training nor inference) but is used for the denoising model.  

x trRosetta orientation: We calculated the ߠǡ߱ǡ ߰ orientation as described in Du et al3. 
We then binned the values into 18 equidistant 20° bins, along with bins for masked 
values or missing values, and one-hot encoded the values. 

We concatenated these features to form the residue and pair input tensors. 

Model Architecture 

Our structure design model consisted of two major parts, which we labeled as the encoder and 
the decoder. 

Each encoder layer was made up of two blocks: a residue update block (which updates the 
UHVLGXH�HPEHGGLQJV���DQG�D�UHVLGXH�SDLU�XSGDWH�EORFN��ZKLFK�XSGDWHV�WKH�SDLUZLVH�³LQWHUDFWLRQ´�
embeddings): 

௜κାଵݔ  ൌ ԛZĞƐŝĚƵĞhƉĚĂƚĞ�ůŽĐŬሺκሻ൫ݔ௜κǡ ݁௜௝κ ൯, 

݁௜κାଵ ൌ ԛWĂŝƌhƉĚĂƚĞ�ůŽĐŬሺκሻ൫ݔ௜κାଵǡ ݁௜௝κ ൯ 

A residue update block performed a multi-head attention update with pair bias and residual 
connections, followed by dropout, layer normalization, and a fully connected layer that also has 
residual connections. A pair update block performed incoming and outgoing triangle-
multiplicative updates. 

The decoder layers only performed residue embedding updates. The architecture of the 
decoder layer residue update block was the same as that of the encoder residue update block, 
with the difference of shared weights across all layers of the decoder. We passed the residue 
embeddings from the decoder layer through a linear projection layer to make the intermediate 
(from states of the intermediate decoder layers) and final (from the state of the final decoder 
layer) coordinate predictions. 

The output of the final decoder layer was also passed through an additional fully connected 
layer, the outputs of which were used as logits for an auxiliary sequence prediction loss. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2024. ; https://doi.org/10.1101/2023.01.08.523187doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.08.523187
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

20 
 

Loss Function 

We applied the following loss function during the training of the structure design model: 

ࣦ ൌ ͳǤͲࣦ&�W� ൅ ͳǤͲࣦ௩ ൅ ͳǤͲࣦĚŝƐƚ ൅  ͲǤͳࣦƉ>��d ൅ ͲǤͲͷࣦ௕ ൅ ࣦƐĞƋ  

ࣦ&�W� is the FAPE loss, as defined by Jumper et al4. We computed FAPE over the final output 
from the model and all intermediate decoder layers. 

ࣦ௩ is a steric violation loss, which was based on ߙܥ-ߙܥ distances between each pair of residues 
and is defined as: ࣦ௩ሺݔሻԛ ൌ ԛ���ሺͲǡʹǤ͹ െ   .ሻݔ

ࣦĚŝƐƚ is a binned pairwise distance loss. We used the pair features from the model and passed 
them through a fully connected layer to compute the prediction logits. The labels were 
calculated by binning the pairwise distances for four atom pairs ሺߙܥǡ ԛܺሻ where ܺ א
ሼܰǡ ǡߙܥ ԛܥǡ ԛߚܥሽ into bins of 0.4 Å width in the range from 2.5 Å to 20 Å, and one extra bin for 
distances greater than 20. We computed the loss value by comparing the predictions to the 
ground-truth labels and applying cross-entropy to the result. 

ࣦƉ>��d was calculated by passing the outputs of the final decoder layer through a fully connected 

layer with output representing 20 equal-width binned log-likelihoods in the range [0, 1]. We 
computed the loss value by comparing the predictions to the ground-truth labels and applying 
cross-entropy to the result. 

ࣦ௕ is the backbone bond length loss, which we computed as the Huber loss calculated over the 
distances between the consecutive backbone atoms along the backbone of each chain in the 
input structure. 

ࣦƐĞƋ is the auxiliary cross-entropy sequence loss, applied over the masked-out part of the 

sequence. 

Hyperparameters and Training 

We trained the structure model with the following dimensions: All encoder layers and decoder 
blocks used hidden layers of size 196 for the residue embeddings and 64 for the pairwise 
embeddings. Both the encoder and the decoder contained 5 layers. During training, the dropout 
rate was set to 0.1. 

We trained the model on antibody-antigen complexes in SAbDab with the HER2 cluster 
removed and antibodies with the same HCDR3 as trastuzumab removed (details on the curation 
of datasets are in the Antibody Databases section). We used the Adam optimizer, with a 
maximum learning rate of 0.001, linear warm-up for 500 steps, followed by linear learning rate 
decay 1 x 10-5 over the rest of the training steps. 

CDR Structure Design 

At inference time, the model took as input the structure and sequence of the antigen, the 
selection of desired epitope residues, the sequences of the antibody framework regions, and the 
lengths of the CDR regions to be designed. The model outputs a 3D structure of the antibody-
antigen complex with CDRs having specified lengths. In addition to a design model, we also 
trained a denoising model which took as input an antibody-antigen complex structure, added 
QRLVH��DQG�UHFRYHUHG�RU�³GHQRLVHG´�WKH�FRPSOH[�VWUXFWXUH��7KH�GHnoising model was trained 
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with the same architecture, data, hyperparameters, and training scheme as the design model. 
The generated structure from the design model was passed into the denoising model and the 
denoised structure is then passed to the inverse folding model to design the antibody CDRs. 

Inverse Folding Model (IgMPNN) 

IgMPNN is similar to what is described in Shanehsazzadeh et al5. IgMPNN uses a message-
passing neural network (MPNN) scheme6. Our implementation took as input the 3D coordinates 
of backbone residues of an antibody-antigen complex. We defined a protein graph as a directed 
graph where residues were represented as nodes and shared edges with their ݇  nearest 
neighbors. We used ݇ ൌ Ͷͺ �in all of our experiments. We initialized the node features ݔ௜ and 
edge features ݁௜௝௧ୀ଴ in our protein graph using the following features6:  

x Distances between ߙܥ-ߙܥ atoms 
x Relative ߙܥ-ߙܥ-ߙܥ frame orientations and rotations 
x Backbone dihedral angles 
x Binary (0/1) features that determine relative chain positions 
x Relative position encodings 

Our featurization differed from the original MPNN6 in that we did not assume access to any side 
chain atoms, and thus we did not include any pairwise distance features involving sidechain 
atoms. 

Our initial features ݔ଴ then get passed into our message passing neural network encoder. Our 
network had multiple message-passing phases, during which the hidden state of each node in 
the graph ݄௜௧ and edge ݁௜௝௧  was updated according to: 

݉௜
௧ାଵ ൌ σ ఏ݂൫݄௜௧ǡ ݁௜௝௧ ǡ ௝݄

௧൯ԛ
௝אேሺ௛೔ሻ , 

݄௜௧ାଵ ൌ థ݂൫݄௜௧ǡ݉௜
௧ାଵ൯ , 

݁௜௝௧ାଵ ൌ ట݂൫݄௜௧ାଵǡ ݁௜௝௧ ǡ ௝݄
௧ାଵ൯,  

where ఏ݂ is our message update function, థ݂ is our node update function, ట݂ is our edge update 
function, and ܰሺ݄௜ሻ is the neighboring nodes for a given node ݅ in the graph. We used 128 as 
our hidden node and edge dimensionality size throughout the network. IgMPNN utilized three 
encoder layers, performing message passing, node updates, and edge updates. The output was 
then fed into the decoder, which had three layers. The decoder performed message passing to 
update the node representations according to: 

݉௜
௧ାଵ ൌ σ ఊ݂൫݁௜௝௧ ǡ ௝݄

௧ǡࣧ ఫ݄
௧෢൯ԛ

௝ԛאேሺ௛೔ሻ , 

where ఊ݂ is our decoder message update function. The ground truth context, ఫ݄
௧෢, which is an 

embedding of the ground truth residues, was provided as input only when it was allowed by our 
causal decoding mask ࣧ . The decoder is masked to prevent the model from incorporating 
information from nodes that have yet to be decoded while allowing the decoder to access 
information from nodes that have already been decoded. When decoding a given residue during 
training time, instead of accessing the embeddings for predicted residues at previously decoded 
positions, the decoder accessed embeddings for ground truth residues at previously decoded 
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positions. The model decoded antibody CDRs in sequential order during training: HCDR1, 

HCDR2, HCDR3, LCDR1, LCDR2, LCDR3 (or only HCDR1, HCDR2, HCDR3 if no light chain is 

present). During inference, a different order of CDRs can be specified. Within each CDR, the 

decoding order is random. Finally, we projected our final node embeddings to logits. 

We trained the model using cross-entropy loss. The model is first pretrained on proteins from 

the PDB curated intR�WKH�³*HQHUDO�3'%´�GDWDVHW��details on the curation of datasets are in the 

Antibody Databases section). The model is then fine-tuned on antibody-antigen complexes in 

SAbDab with the HER2 cluster removed and antibodies with the same HCDR3 as trastuzumab 

removed (details on the curation of datasets are in the Antibody Databases section). We used 

the Adam optimizer, with a maximum learning rate of 0.001, linear warm-up for 500 steps, 

followed by linear learning rate decay 1e-5 over the rest of the training steps. 

At inference time, the model is given an antibody-antigen complex structure, such as a 

predicted structure from MaskedDesign, and predicts the CDRs of the antibody. We predicted 

HCDR3 first, followed by HCDR1 and HCDR2 (and then the LCDRs, which are kept fixed during 

in vitro screening, in numerical order). We selected this order to prevent the model from 

conditioning on potentially false CDR predictions when predicting HCDR3. We note that the 

model is never provided ground truth CDR sequences at inference time. For sampling, we used 

weighted random sampling after applying softmax with a temperature of ܶ ൌ ͲǤͷ  WR�WKH�PRGHO¶V�
logits. We also prevented the model from sampling cysteines to avoid having unpaired cysteines 

in the CDRs. Predicted CDRs are then scored by passing the sequence back into the model 

and computing log-likelihood over the relevant tokens and positions. This score is used to rank 

the sequences and select the top ones for in vitro screening. 

Antibody Databases 
The Observed Antibody Space (OAS)7 was retrieved on February 1st, 2022. The Structural 

Antibody Database (SAbDab)8 was retrieved on December 6th, 2022. The corresponding PDB 

files were downloaded from RCSB PDB9. To generate a high-quality dataset used for training, 

we applied the following filters: 

x Drop entries without a heavy antibody chain. 

x Drop entries without an antigen. 

x Drop entries where the PDB id, heavy, light, and antigen chains were repeated 

(duplicated). 

x Drop entries where one of the HCDRs was too short (shorter than 5 amino acids for 

HCDR1 and HCDR2, and shorter than 7 amino acids for HCDR3). 

x Drop entries where one of the HCDRs was too long (longer than 26 amino acids for any 

of the HCDRs). 

x Drop entries where more than 10% of heavy chain residues were missing from the 

structure. 

x Drop entries where more than 25% of antigen residues were missing from the structure. 

After filtering, there were 6933 entries left in the database. We then applied sequence clustering 

to the antigen sequences using mmseqs210 version 13.45111, with the following parameters: 

min-seq-id=0.4, cov-mode=1, cluster-mode=2, cluster-reassign=true. We used these cluster 

annotations when splitting the data into train, validation, and test folds, assigning an entire 

cluster to one of the three subsets. 
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The General PDB dataset was created from a selection of PDB files available in the RSCB 

PDB
9

 database. We made the selection using the Graphein library (version 1.0)
11

, downloading 

all PDB structures where each chain was longer than 40 and shorter than 500 amino acids. We 

further filtered out any structures that contained chains with missing backbone atoms. This 

resulted in a dataset with 74734 entries. We then applied sequence clustering to the antigen 

sequences using mmseqs2 with the same set of parameters used for clustering the SAbDab 

data (min-seq-id=0.4, cov-mode=1, cluster-mode=2, cluster-reassign=true). As with SAbDab, 

we used these cluster annotations when splitting the data into train, validation, and test folds, 

assigning an entire cluster to one of the three subsets.  

To compute edit distance (number of mutations) between antibody sequences, we used the 

/HYHQVKWHLQ�GLVWDQFH��GHQRWHG�/HY��7KH�³0LQLPXP�+&'5��HGLW�GLVWDQFH�WR�2$6´�ZDV�
computed by taking the minimum edit distance between an HCDR3 of interest and all HCDR3s 

in OAS: 

���
௬ԛא K�^

>Ğǀ൫ݔ௛యǡ  ௛య൯ݕ

This value was analogously computed for HCDR1 and HCDR2 as well as for other databases 

VXFK�DV�6$E'DE�RU�RXU�WUDLQLQJ�GDWD��7KH�³0LQLPXP�+&'5����HGLW�GLVWDQFH�WR�2$6´�ZDV�
computed by taking the minimum edit distance between the tuple of HCDRs (HCDR1, HCDR2, 

HCDR3) belonging to an antibody of interest and all such tuples in OAS, analogously computed 

for other databases: 

���
௬ԛאԛK�^

>Ğǀ൫ݔ௛భǡ ௛భ൯ԛݕ ൅  >Ğǀ൫ݔ௛మǡ ௛మ൯ԛݕ ൅ ԛ>Ğǀ൫ݔ௛యǡ   ௛య൯ݕ

To compute the OAS HCDR3 length distribution (Supplementary Table 1), we iterated through 

all heavy chain sequences in OAS, considered the HCDR3 length, and maintained a tally of 

HCDR3 lengths. We then restricted to HCDR3 sequences with lengths between 9 and 17 amino 

acids, normalized to get the length distribution. For the OAS-J HCDR3 length distribution, we 

performed an analogous process but iterated only through heavy chain sequences in OAS that 

had trastuzumab's J-gene. For the SAbDab HCDR3 length distribution, we took all unique 

HCDR3 sequences in SAbDab with lengths between 9 and 17 amino acids and computed the 

frequencies at each length. 

Model Structural Inputs 
As input to the models, we provided an antigen structure and specified an epitope. For the de 
novo setting, we provided the structure of human HER2 from PDB:1N8Z (Chain C)

12

 and 

specified the trastuzumab epitope determined from the structure (i.e., antigen residues within 5 

Å of the antibody with distance computed over all atoms). In this setting, we successfully 

designed using versions of the antigen structure with variable amounts of noise or having been 

relaxed with Rosetta
a

. 

To show the model's dependence on the antigen information, we attempted to design human 

HER2 binders with three incorrect antigens, namely rat HER2, HER3, and VEGF. For rat HER2, 

we used the structure from PDB:1N8Y (Chain A)
12

. For HER3, we used the structure from 

PDB:7MN8 (Chain A)
13

. For VEGF, we used the structure from PDB:1CZ8 (Chains A, B)
14

. For 

                                                           
a https://www.rosettacommons.org/software 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2024. ; https://doi.org/10.1101/2023.01.08.523187doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.08.523187
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

24 
 

rat HER2 and HER3, we specified an epitope based on sequential/structural homology to the 
trastuzumab epitope of human HER2. For VEGF, we specified the ranibizumab15 epitope, 
computed analogously to the trastuzumab epitope described above. 

Biological Baselines 
We used the Observed Antibody Space (OAS)7 and the Structural Antibody Database 
(SAbDab)8 to generate sets of biologically relevant sequences for comparison to our generative 
models.  

For HCDR3: 7KH�³5DQGRP�2$6´�EDVHOLQH�was constructed by randomly sampling 50,000 
unique HCDR3s from OAS with the only condition being that they had a length of 9-17 amino 
acid residues (for parity with our model generations). We similarly constructed WKH�³5DQGRP�
OAS-J" baseline by randomly sampling 10,000 unique HCDR3s from OAS from antibodies that 
have the same J-gene as trastuzumab, while also imposing the same length constraint as the 
2$6�EDVHOLQH��)RU�WKH�³6$E'DE
´�EDVHOLQH, we included all 2,395 unique HCDR3s from SAbDab 
that have lengths of 9-17 residues and were neither trastuzumab nor its variants. For the 
³3HUPXWHG�6HTXHQFHV´�EDVHOLQH, we randomly sampled a subset of 5,000 HCDR3s from the 
³5DQGRP�2$6´�EDVHOLQH�DQG�UDQGRPO\�VKXIIOHd each amino acid sequence via permutation to 
destroy positional information.  

For all three HCDRs (HCDR123): We took an analogous approach to the HCDR3 baselines but 
restricted it to HCDR1 and HCDR2 sequence lengths of 8 residues (to match the HCDR1 and 
HCDR2 lengths of trastuzumab). We sampled �������VHTXHQFHV�IRU�WKH�³5DQGRP�2$6´�
EDVHOLQH���������VHTXHQFHV�IRU�WKH�³5DQGRP�2$6-J" baseline, and all 1,572 unique HCDR123s 
from SAbDab, which fit WKH�OHQJWK�FULWHULD�IRU�WKH�³6$E'DE´�EDVHOLQH and were neither 
trastuzumab nor its variants. 

For analysis post in vitro screening, we removed from consideration any CDRs that contained 
cysteines to avoid unpaired cysteines and match this sampling constraint in IgMPNN. We 
present results with and without cysteines (Supplementary Table 4) and find that binding rates 
are higher among CDRs that do not contain cysteines compared to CDRs that do (p < 1e-5 for 
OAS, p = 0.0014 for OAS--��)LVKHU¶V�H[DFW�WHVW�� 

A fraction of each library was also used for ablation studies (results not presented; used for 
internal benchmarking), so the overall binding rate of the entire libraries (consisting of hundreds 
of thousands of sequences) may appear lower than the top k binding rates reported here. 

Binding Rate of Top ݇ Sequences 
We defined the binding rate as the fraction of designs in a population of size ݇ which are 
determined experimentally to bind to the target antigen. To compute the binding rate, we first 
identified the top ݇ sequences; these are determined via ranking by sequence loss (model log-
likelihood) within groups of fixed HCDR3 lengths weighted by the OAS-J length distribution 
(Supplementary Table 1). Specifically: 

x We defined dŽƉκሺ݇κሻ binders as the number of binders amongst the top ݇κ sequences 
(top sequences according to model log-likelihood) with HCDR3 lengths equal to κ. 
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x We let κ݂ be the frequency of length κ HCDR3s in OAS-J for κԛ א ሼͻǡͳͲǡǥ ǡͳ͹ሽ. Then we 
took ሺ݇ଽǡ ݇ଵ଴ǡǥ ǡ ݇ଵ଻ሻ such that σ ݇κଵ଻ԛ

κୀଽ ൌ ݇ and the quantity σ ȁ݇κ െ ݇ԛ ڄ κ݂ȁଵ଻ԛ
κୀଽ  was 

minimized. 
x We let dŽƉሺ݇ሻ binders =σଵ଻

κୀଽ ԛdŽƉκሺ݇κሻ binders. 

In some cases, the number of HCDR3s with length 9 or length 10 screened was lower than 
݇ଽǡ ݇ଵ଴ as computed above. In that case, we considered all such HCDR3s and recomputed 
݇ଵଵǡ ݇ଵଶǡǥ ǡ ݇ଵ଻ via the same strategy originally used for ݇ଽǡ ݇ଵ଴ǡǥ ǡ ݇ଵ଻, but with the budget 
adjusted to the difference between ݇ and the number of HCDR3s with length 9 or length 10 and 
with the OAS-J frequency modified to only consider κ ൐ ͳͲǤ   

Comparing Binding Rates 
For comparing binding rates between two populations, we ran Fisher's exact test. Specifically, if 
population 1 consisted of ܾଵbinders and ݊ଵ non-binders and population 2 consisted of ܾଶ binders 
and ݊ଶ non-binders then: 

x The binding rates for population 1 and population 2 were given by ݎଵ ൌ
௕భ

௕భା௡భ
 and ݎଶ ൌ

௕మ
௕మା௡మ

, respectively. 

x The ratio of population 1's binding rate to population 2's binding rate was ௥భ
௥మ

. 

x The p-value (Fisher's exact test) corresponding to the binding rates of population 1 and 2 

was ݌ԛ ൌ ԛ
ቀ್భశ೙భ್భ

ቁԛቀ್మశ೙మ್మ
ቁ

ቀ್భశ೙భశ್మశ೙మ್భశ್మ
ቁԛ

. 

In Silico Structural Modeling 
Three-dimensional models of selected de novo HCDR3 binders were created in PyMOL16 and 
the Crystallographic Object-Oriented Toolkit (Coot)17 using the coordinates of the trastuzumab-
HER2 complex (PDB:1N8Z). Rosetta's FastRelax application18 was applied using flexible 
backbone and side-chain degrees of freedom parameters. Prior to the relax procedure, we first 
idealized all candidate structures using Rosetta's Idealize protocol to avoid steric clashes and 
improper geometry. We relaxed the structures using the maximum number of rotamers by 
passing -EX1, -EX2, -EX3 and -EX4 flags at initialization. We also included flags -
packing:repack_only to disable design, -no_his_his_pairE, and -multi_cool_annealer 10 to set 
the number of annealing iterations. For ranking of conformations in FastRelax, we used 
Rosetta's REF2015 energy function. It is well known that running relax on a structure will often 
move the backbone a few Angstromsb, so we included an additional term containing harmonic 
distance constraints for all pairs of ߚܥ atoms that were either not part of a CDR loop or not 
within distance 10 Å to any atom in a CDR loop, based on the conformation of the initial 
structure. These constraints were given weight 1e-4. The protocol was run 10 times for each 
target, and we selected the decoy with the lowest energy in the HCDR3 loop. 

  

                                                           
b Motivation is given in the official Rosetta documentation for Fast Relax 
(https://www.rosettacommons.org/docs/latest/rosetta_basics/preparation/preparing-structures) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2024. ; https://doi.org/10.1101/2023.01.08.523187doi: bioRxiv preprint 

https://www.rosettacommons.org/docs/latest/rosetta_basics/preparation/preparing-structures
https://doi.org/10.1101/2023.01.08.523187
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

26 
 

Cloning 
Antibody variants were cloned and expressed in Fab format. To produce ACE AssayTM and 
surface plasmon resonance (SPR) datasets, DNA variants of HCDR3 alone or spanning 
HCDR1 to HCDR3 were purchased as single-stranded DNA (ssDNA) oligo pools (Twist 
Bioscience). We spot-checked selected binders by re-purchasing as double stranded DNA 
eBlocks (Integrated DNA Technologies) or ssDNA oligo pools. Codons were randomly selected 
from the two most common in E. coli B strain19 for each residue. 

Amplification of the ssDNA oligo pools was carried out by PCR according to Twist Bioscience's 
recommendations, except for using Q5 high fidelity DNA polymerase (New England Biolabs) 
instead of KAPA polymerase. Briefly, 25 µL reactions consisted of 1x Q5 Mastermix, forward 
and reverse primers, 0.3 µM each, and 10 ng oligo pool. Reactions were initially denatured for 3 
min at 95°C, followed by 13 cycles of: 95°C for 20 s; 66°C for 20 s; 72°C for 15 s; and a final 
extension of 72°C for 1 min. DNA amplification was confirmed by agarose gel electrophoresis, 
and amplified DNA was subsequently purified (DNA Clean and Concentrate Kit, Zymo 
Research). 

To generate linearized vector, a two-step PCR was carried out to split our plasmid vector 
carrying the Fab format trastuzumab into two fragments in a manner that provided cloning 
overlaps of approximately 25 nucleotides (nt) on the 5' and 3' ends of the amplified ssDNA oligo 
pool libraries, or 40 nt on the 5' and 3' ends of IDT eBlocks (Integrated DNA Technologies). 
Vector linearization reactions were digested with DpnI (New England Biolabs) and purified from 
a 0.8% agarose gel using the Gel DNA Recovery Kit (Zymo Research) to eliminate parental 
vector carry through. Cloning reactions consisted of 50 fmol of each purified vector fragment, 
either 100 fmol PCR-amplified ssDNA oligo pool, or 10 pmol eBlock library inserts and 1x final 
concentration NEBuilder HiFi DNA Assembly (New England Biolabs). Reactions were incubated 
at 50°C for 25 min using eBlocks or 2 h using PCR-amplified oligo pools. Assemblies were 
subsequently purified using the DNA Clean and Concentrate Kit (Zymo Research). DNA 
concentrations were measured using a NanoDrop OneC (Thermo Scientific). 

For high-diversity libraries (HDLs), Transformax EPI300 (Lucigen) E. coli was transformed using 
the MicroPulser Electroporator (BioRad) with the purified assembly reactions and recovered in 
1000 µL of SOC medium cultivated at 30°C for 1 h. The cell culture was then grown in 20 mL of 
Teknova LB Broth with 50 µg/mL Kanamycin at 30°C and 80% humidity with 270 rpm shaking 
for 18 h. Plasmids were extracted (Plasmid Midi Kit, Zymo Research) and submitted for QC 
VHTXHQFLQJ��(OHFWURFRPSHWHQW�6ROX3UR��KRVW�VWUDLQ�was transformed with 20 ng of DNA and 
recovered in 500 µL of SOC medium cultivated at 30° for 1 h. 

For low-GLYHUVLW\�OLEUDULHV��/'/V���$EVFL�6ROX3UR��KRVW�VWUDLQ�was transformed with the purified 
assembly reactions and grown overnight at 30°C on agar plates containing 50 µg/ml kanamycin 
and 1% glucose. Colonies were picked for QC analysis prior to cultivation for induction. 

Quality Control Analysis 

The quality of high-diversity variant libraries was assessed by deep sequencing. Briefly, library 
plasmid pools were amplified by PCR across the region of interest and sequenced with 2x150 or 
2x300 nt reads using the Illumina MiSeq platform with 20% PhiX. The PCR reaction used 10 nM 
primer concentration, Q5 2x master mix (New England Biolabs), and 1 ng of input DNA diluted 
in H2O. Reactions were initially denatured at 98°C for 3 min; followed by 30 cycles of 98°C for 
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10 s, 59°C for 30 s, 72°C for 15 s; with a final extension of 72°C for 2 min. Sequencing results 
were analyzed for distribution of mutations, variant representation, library complexity, and 
recovery of expected sequences. Metrics included coefficient of variation of sequence 
representation, read share of top 1% most prevalent sequences, and percentage of designed 
library sequences observed within the library. 

The quality of low-diversity variant libraries was assessed by performing rolling circle 
amplification (Equiphi29, Thermo Fisher Scientific) on 24 colonies and sequencing using the 
Illumina DNA Prep, Tagmentation Kit (Illumina Inc.). Each colony was analyzed for mutations 
from reference sequence, presence of multiple variants, misassembly, and matching to a library 
sequence (Geneious Prime). 

$QWLERG\�([SUHVVLRQ�LQ�6ROX3UR��E. coli B Strain 
After recovery in SOC medium, high-diversity libraries (HDLs) were grown in 50 mL of Teknova 
LB Broth with 50 µg/mL Kanamycin at 30°C and 80% humidity with 270 rpm shaking for 24 h. 
After 24 h, the pre-culture was diluted to OD600 = 1 in 100 mL induction base medium (IBM) 
(4.5 g/L potassium phosphate monobasic, 13.8 g/L ammonium sulfate, 20.5 g/L yeast extract, 
20.5 g/L glycerol, 1.95 g/L citric aAcid) containing inducers and supplements (250 µM 
arabinose, 50 µg/mL Kanamycin, 8 mM magnesium sulfate, 1 mM propionate, 1X Korz trace 
metals) and grown for 16 h in a 500 mL baffled flask at 26°C and 80% humidity with 270 rpm 
shaking. At the end of the 16 h, 250 µL aliquots adjusted to 20% v/v glycerol were stored at -
80°C. 

After transformation and QC of low-diversity libraries (LDLs), individual colonies were picked 
into deep-well plates containing 400 µL of Teknova LB Broth 50 µg/mL Kanamycin and 
incubated at 30°C and 80% humidity with 1000 rpm shaking for 24 h. At the end of the 24 h, 150 
µL samples were centrifuged (3300 g, 7 min), supernatant decanted from the pre-culture plate, 
and cell pellets sent for sequence analysis. Samples of 80 µL from the pre-culture were 
transferred to 400 µL of IBM containing inducers and supplements as described above. Culture 
was grown for 16 h at 26°C and 80% humidity with 270 rpm shaking. After 16 h, 150 µL 
samples were taken and centrifuged (3300 g, 7 min) into pellets with supernatant decanting 
prior to being stored at -80°C. 

Activity-specific Cell-Enrichment (ACE) AssayTM 
For staining, thawed glycerol stocks from induced cultures were transferred to 0.7 ml matrix 
tubes (500 µL, OD600 = 2), centrifuged (4000 g, 5 min), and resulting pelleted cells were 
washed three times with PBS (pH 7.4, 1 mM µL of phosphate buffer by adding prior to fixation 
250 µL of 0.6% paraformaldehyde and 0.04% glutaraldehyde in phosphate buffer (32 mM, pH 
7.4)). After 40 min incubation on ice, samples were centrifuged (4000 g, 5 min) and pellets were 
washed three times with PBS (pH 7.4, 1 mM EDTA), resuspended in permeabilization buffer (20 
mM Tris, 50 mM glucose, 10 mM EDTA, 5 µg/mL rLysozyme), and incubated for 8 min on ice. 
Fixed and permeabilized cells were then centrifuged (4000 g, 5 min) and washed three times 
with staining buffer (Perkin Elmer AlphaLISA immunoassay buffer, 25 mM HEPES, 0.1% casein, 
1 mg/mL dextran-500, 0.5% Triton X-100, 0.05% Kathon). 
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Staining 

Prior to library staining, the HER2 probe was titrated against the reference strain to determine 
the 75% effective concentration (EC75). Following cell preparation, the library was resuspended 
in 500 µL staining buffer containing 100 nM either His/Avi-tagged human HER2 (Acro 
Biosystems) conjugated to 50 nM streptavidin-AF647 (Invitrogen) or tag-free human HER2 
(Acro Biosystems) directly conjugated to AF647 via free amines. Libraries were incubated with 
the probe overnight (16 h) with end-to-end rotation at 4°C, centrifuged (4000 g, 5 min), and 
pellets were washed three times with PBS. Pellets were resuspended in 500 µL of staining 
buffer containing 26.5 nM anti-kappa light chain:BV421 (BioLegend), incubated for 2 h with end-
to-end rotation at 4°C prior to centrifugation (4000xg, 5 min), and then washed three times with 
PBS and resuspended in 200 µL of PBS for sorting. 

Sorting 

For the binary ACE AssayTM, high-diversity libraries (HDLs) were sorted on FACSymphony S6 
(BD Biosciences) instruments. Immediately prior to sorting, 50 µL of stained sample was 
transferred to a flow tube containing 1 mL PBS + 3 µL propidium iodide. Aggregates, debris, 
and impermeable cells were removed with singlets, size, and PI+ parent gating, respectively. 
Cells were then gated to include only those with kappa light chain expression (BV421). A total of 
three collection gates were set to sample at the high end of the binding range (top 90% of the 
positive binding signal as determined by a sample matched negative control), the remaining 
10% positive binding signal events, and a negative gate containing the events with no binding 
signal. Libraries were sorted simultaneously on up to four instruments with photomultipliers 
adjusted to normalize fluorescence intensity, and the collected events were processed 
independently as technical replicates. 

Gating 

Gating was done in the following order (visual presented in Supplementary Fig. 14): 

1. Singlets were gated to exclude aggregates from analysis using SP SSC-W vs. SP SSC-
A. 

2. Permeabilized cells were gated through inclusion of all PI positive events on a PI-A vs. 
SP SSC-A plot to eliminate non-permeabilized cells and non-cell noise and debris. 

3. Cell size was evaluated using SSC-A vs FSC-A to ensure only appropriately sized cells 
were sorted. 

4. Kappa light chain expressing cells were gated using a histogram of BV421 signal and a 
non-expressing control strain as a negative control. 

5. HER2 binding cells were gated using a histogram of AF647 and a non-binding control 
strain as a negative control. HER2 binding was divided into two separate gates (P1 and 
P2) for analysis within the ACE AssayTM pipeline. 

Sorted Material Sample Preparation 

Cell material from sorted gates was collected in a diluted PBS mixture (VWR) in 1.5 mL tubes 
(Eppendorf). A sample of the unsorted library material was also processed for QC and ACE 
AssayTM metric calculations. Post-sort samples were centrifuged (3,800 g) and tube volume was 
normalized to 20 µL. Amplicons encompassing the HCDR3 or VH region were generated by 
PCR. The reaction used 10 nM primer concentration, Q5 2x master mix (New England Biolabs) 
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and 20 µL of sorted cell material input suspended in diluted PBS (VWR). Reactions were initially 
denatured at 98°C for 3 min, followed by 30 cycles of 98°C for 10 s; 59°C for 30 s; 72°C for 15 
s; with a final extension of 72°C for 2 min. After amplification, samples were cleaned 
enzymatically using ExoSAP-IT (Applied Biosystems). Resulting DNA samples were quantified 
by Qubit fluorometer (Invitrogen), prepped for sequencing with the ThruPLEX DNA-Seq Kit 
(Takara Bio), normalized and pooled. Pool size was verified via Tapestation 1000 HS and was 
sequenced on Illumina NextSeq 1000 P2 (2x150 nt or 2x300nt) with 20% PhiX. 

Binary ACE AssayTM Analysis 

Enrichment scores were calculated for individual variants screened by a binary version of the 
ACE AssayTM using the following procedure:  

1. Paired-end reads were merged using Fastp20 with quality filtering and base correction in 
merged regions enabled. 

2. Primers were removed from both ends of the merged read using the Cutadapt tool21, and 
reads were discarded where primers were not detected.  

3. Unique sequences were tallied to provide raw counts of each variant observed in each 
sample. Sequences that did not match a designed sequence in the library were 
discarded. 

4. For each sample, proportional abundances were calculated for each variant. Enrichment 
scores were calculated by dividing the proportional abundance of each variant in a gate 
by its proportional abundance in the unsorted library sample.  

Surface Plasmon Resonance (SPR) 
Sample Preparation 

Post-induction samples were transferred to 96-well plates (Greiner Bio-One), pelleted and lysed 
in 50 µL lysis buffer (1X BugBuster protein extraction reagent (Millipore) containing 0.01 KU 
Benzonase nuclease (Millipore) and 1X Halt Protease inhibitor cocktail (Thermo Scientific)). 
Plates were incubated for 15-20 min at 30°C then centrifuged to remove insoluble debris. After 
lysis, samples were adjusted with 200 µL SPR running buffer (10 mM HEPES, 150 mM NaCl, 3 
mM EDTA, 0.01% w/v Tween-20, 0.5 mg/mL BSA) to a final volume of 260 µL and filtered into 
96-well plates. Lysed samples were then transferred from 96-well plates to 384-well plates for 
high-throughput SPR using a Hamilton STAR automated liquid handler. Colonies were prepared 
in two sets of independent replicates prior to lysis and each replicate was measured in two 
separate experimental runs. In some instances, single replicates were used, as indicated. 

SPR 

High-throughput SPR experiments were conducted on a Carterra LSA SPR instrument using 
SPR running buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% w/v Tween-20, 0.5 
mg/mL BSA) and SPR wash buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% w/v 
Tween-20). Carterra LSA SAHC30M chips were functionalized with 20 µg/mL biotinylated 
antibody capture reagent for 600 s prior to conducting experiments. Lysed samples in 384-well 
blocks were immobilized onto chip surfaces for 600 s followed by a 60 s washout step for 
baseline stabilization. Antigen binding was conducted using a 300 s association phase followed 
by a 900 s dissociation phase. Six leading blanks of SPR running buffer were injected to create 
a consistent baseline prior to monitoring antigen binding kinetics. After the leading blanks, five 
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concentrations of HER2 extracellular domain (ACRO Biosystems, three-fold serial dilutions from 
500 nM) were injected. After antigen injections, the chip was regenerated with two 120 s 
injections of regeneration buffer (10 mM glycine, pH 2.0). Sample immobilization, blanks, and 
antigen injections were repeated to produce technical replicate data. In some cases, biological 
replicates were also run separately for additional replicate data points per clone. 

Sequencing for SPR Libraries (LDLs) 

To identify the DNA sequence of individual antibody variants evaluated by SPR, duplicate plates 
were provided for sequencing. A portion of the pelleted material was transferred into 96 well 
PCR (Thermo-Fisher) plate via pinner (Fisher Scientific) which contained reagents for 
performing an initial phase PCR of a two-phase PCR for addition of Illumina adapters and 
sequencing. The reaction volume was 12.5 µL. During the initial PCR phase, partial Illumina 
adapters were added to the amplicon via 4 PCR cycles. The second phase PCR added the 
remaining portion of the Illumina sequencing adapter and the Illumina i5 and i7 sample indices. 
The initial PCR reaction used 0.45 µM UMI primer concentration, 6.25 µL Q5 2x master mix 
(New England Biolabs) and PCR-grade H2O. Reactions were initially denatured at 98°C for 3 
min, followed by 4 cycles of 98°C for 10 s; 59°C for 30 s; 72°C for 30 s; with a final extension of 
72°C for 2 min. Following the initial PCR, 0.5 µM of the secondary sample index primers were 
added to each reaction tube. Reactions were then denatured at 98°C for 3 min, followed by 29 
cycles of 98°C for 10 s; 62°C for 30 s; 72°C for 15 s; with a final extension of 72°C for 2 min. 
Reactions were then pooled into a 1.5 mL tube (Eppendorf). Pooled samples were size-selected 
with a 1x AMPure XP (Beckman Coulter) bead procedure. Resulting DNA samples were 
quantified by Qubit fluorometer. Pool size was verified via Tapestation 1000 HS and was 
sequenced on Illumina MiSeq Micro (2x150 nt) for HCDR3 libraries or an Illumina MiSeq 
Reagent Kit v3 (2x300 nt) for HCDR1-HCDR3 libraries with 20% PhiX.  

After sequencing, amplicon reads were merged using Fastp20, trimmed by cutadapt21 and each 
unique sequence enumerated. Next, custom R scripts were applied to calculate sequence 
frequency ratios between the most abundant and second-most abundant sequences in each 
sample. Levenshtein distance was also calculated between the two sequences. These values 
were used for downstream filtering to ensure a clonal population was measured by SPR. The 
most abundant sequence within each sample was compared to the designed sequences and 
discarded if it did not match any expected sequence. Dominant sequences were then combined 
with their companion Carterra SPR measurements. 

Binder Identification with the Activity-specific Cell-Enrichment (ACE) 
AssayTM 
To determine the success of the ACE AssayTM, we included over a thousand controls (SPR-
validated binders and non-binders) in the libraries. The binary ACE AssayTM (bACE) produced 
enrichment scores based on proportional abundances in the specified FACS gates. The ଵܲ and 
ଶܲ enrichment scores were predictive of binding (Supplementary Fig. 1) based on their 

separation of the binding and non-binding controls. 

To label screened sequences as binders, we set a threshold on the median ଵܲ enrichment score 
(across three replicates, ܴଵǡ ܴଶǡ ܴଷ) and a separate threshold on the minimum ଶܲ enrichment 
score (across the same three replicates as ଵܲ). Specifically, given thresholds ݐଵǡ  ଶ, we labeled aݐ
sequence a binder if: 
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ŵĞĚŝĂŶሺ ଵܴܲଵǡ ଵܴܲଶǡ ଵܴܲଷሻԛ ൒ ԛݐଵԛKZԛ���ሺ ଶܴܲଵǡ ଶܴܲଶǡ ଶܴܲଷሻ ԛ ൒ ԛݐଶǤ    

Otherwise, we labeled the sequence a non-binder. 

We determined the thresholds ݐଵǡ  ଶ using a grid-search aimed at maximizing F1-score on theݐ
controls included in the library. For the HCDR3 library, we found that ݐଵ ൌ ͵Ǥͷͳǡ ଶݐ ൌ ͺǤͺͻ 
achieved the highest F1-score (Supplementary Table 2). For the HCDR123 library, we found 
that ݐଵ ൌ ͸Ǥͺ͹ǡ ଶݐ ൌ ͵ǤͲͷ achieved the highest F1-score (Supplementary Table 3). 

Functional, Developability and Manufacturability Assessment of Final 
Candidates 
Cloning expression and purification of high-affinity Fab candidates. 

High-affinity Fabs were cloned and expressed as described above, and their sequences were 
verified. Upon seed induction, Fabs were expressed in IBM media in 50 mL shake flask cultures 
for 16 h (see antibody expression methods above). The cells were pelleted and lysed in lysis 
buffer (50 mM Tris, 20 mM sodium chloride, 2 mM magnesium chloride, pH 7.5, 2 U/mL 
Benzonase nuclease (Millipore) and 2400 U/mL rLysozyme Solution (Millipore)). Then, they 
were incubated at 4°C on a rocking shaker for 1 hr followed by centrifugation at 15,000 RPM. 
Supernatants were loaded onto CH1-XL affinity resin (Thermo Scientific), washed with PBS and 
eluted in 10 mM Glycine pH 2.5. Eluted samples were neutralized with 1 M Tris-HCL pH 9. 
Samples were buffer exchanged into 1X PBS and stored at 4°C.  

Product Quality of Final Candidates Reformatted as mAbs 

All experimental monoclonal antibodies (mAbs) were produced at Wuxi Biologics in a CHO-K1 
expression system. Samples were purified via protein A affinity chromatography purification, 
further purified by size exclusion chromatography (SEC), and kept in a storage buffer. 
Concentration of mAbs was determined by A280 using the SoloVPE instrument (Repligen). 
Suitable protein quality was confirmed by SEC, reduced capillary gel electrophoresis (CGE) or 
non-reduced CGE (NR-CGE), imaging capillary isoelectric focusing (icIEF), and intact mass 
spectrometry after deglycosylation. For aggregation determination, SEC was performed using 
1X PBS, pH 7.4 as a mobile phase and a 30 cm column TSKgel UP-SW2000 (Tosoh). To 
evaluate fragmentation, NR-CGE was performed with SDS-MW Analysis Kit (Sciex) together 
with the SDS sample buffer with iodoacetamide; the separation method was performed using 
the high-speed setup. When CGE was performed under reducing conditions, 5% (v/v) 2-
mercaptoethanol was added to the SDS sample buffer, and the separation method was also 
performed using high-speed setup. Charge distribution and pI of the candidates were 
determined by icIEF using the Maurice system (Protein Simple). Samples were prepared by 
mixing 1:9 (v:v) of 1.0 mg/mL mAb samples and the following master mix: 0.35% (v/v) 1% 
methylcellulose, 2 M urea, 4% (v/v) Pharmalyte® 3-10 (Cytiva), 0.5% (v/v) pI marker 4.05 
(Protein Simple), 0.5% (v/v) pI marker 9.99 (Protein Simple), and 10 mM arginine. 

Confirmation of identity and evaluation of highly abundant post-translational modifications were 
determined by deglycosylated intact mass spectrometry. The samples were deglycosylated 
using PNGase F (New England Biolabs) overnight and under native conditions as instructed by 
the manufacturer. Intact mass analysis was performed using a reversed phase HPLC (Agilent) 
connected to a TripleTOF 6600+ MS System (Sciex). Intact mass data analysis was performed 
using PMI-Byos software v4.5-53 (Protein Metrics). 
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One experimental mAb (HCDR3 = ARYRHWYYDYDY) showed < 95% purity by NR-CGE. Data 
on developabilty, functional assessment, and epitope mapping are released but not presented 
due to the possibility of manufacturing issues that could affect the side-by-side comparison with 
the other high-purity candidates. 

Affinity and Cross-Reactivity SPR 

SPR experiments were performed as described above. Human HER2 extracellular domain 
(Acro Biosystems) was used as an analyte with injections of 3-fold serial dilutions of 500 nM 
starting concentrations. For affinity determination, sensorgrams were fitted using non-linear 
regression to a single site binding model. Similar experiments using human HER1 (Acro 
Biosystems), human HER3 (Acro Biosystems), human HER4 (Acro Biosystems), cynomolgus 
HER2 (Acro Biosystems), canine HER2 (Sino Biological), and mouse HER2 (Acro Biosystems) 
were used for binding selectivity assessment. Rovalpitizumab (Twist Biosciences, Genscript) 
was used as a negative control in these experiments. 

Cell-Surface Antigen Binding 

The cell-surface antigen binding experiment was performed using SK-OV-3 cells (ATCC, HTB-
77) in ³thaw & use´ format. Cells were grown in McCoy's 5a medium, supplemented with 10% 
heat-inactivated fetal bovine serum, until 80-90% of confluency was reached. They were 
detached with EDTA-Trypsin treatment and cryopreserved in a growth medium, supplemented 
with 5% DMSO at a density of 107cells per mL. On the day of the experiment, cells were thawed 
by a 2 min incubation in 37°C water bath, centrifuged at 200 g for 5 min at room temperature, 
and resuspended in McCoy's 5a medium, supplemented with 10% heat-inactivated fetal bovine 
serum, at a final cell density of 5x105 cells/mL. A sample of 100 µL of cell suspension was 
plated per well of a 96-well plate (5x104 cells/well) and incubated at 37°C, 5% CO2 overnight. 
Cells were washed with Hank's balanced salt solution three times, fixed with 3.7% formaldehyde 
solution, and blocked with 1% BSA. Serially diluted in TBS 1% BSA, antibodies were added to 
the fixed cell monolayer. After 1 h of incubation, the secondary anti-human Fc antibody-HRP 
conjugate was added. Binding of the test antibody was assessed by measuring the optical 
density of the product of TMB oxidation (HRP substrate). To calculate the EC50 values, non-
linear regression analysis was performed in GraphPad Prism software (version 10.0.2). 

Antibody-Dependent Cell Cytotoxicity (ADCC) 

Engineered Jurkat cells (Invivogen, jktl-nfat-cd16), stably transformed with a luciferase gene 
under the control of an NFAT-driven promotor, were used as the effector cells. SK-OV-3 (ATCC, 
HTB-77) cells were used as the target cells. Target cells were plated into a 96-well plate the 
night before, as described in the cell-surface antigen binding section. On the day of the 
experiment, the growth medium was aspirated, and then serially diluted in McCoy's 5a medium 
supplemented with 10% fetal bovine serum. The test antibodies were added to the wells, 
followed by pre-incubation for 2 h. Effector cells were plated in McCoy's 5a medium 
supplemented with 10% fetal bovine serum at a final density of 1e10 cells/well. The effector to 
the target cell ratio (E:T) was 2:1. After 18 h of incubation at 37°C, 5% CO2, 20 µL of growth 
medium was combined with 180 µL of luciferase substrate (Quanti Luc, Invivogen, rep-qlc1) in a 
solid white 96-well plate. Luminescence intensity was measured in a microplate reader 
(Envision, Perkin Elmer) immediately. To calculate the EC50 values, non-linear regression 
analysis was performed in Prism GraphPad software (version 10.0.2). 
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Dynamic Light Scattering and nano Differential Scanning Fluorimetry (DLS/DSF) 
Particle size and melting temperature were assessed using a Prometheus Panta (Nanotemper). 
Antibodies were diluted to 0.5 mg/mL using 1x PBS µLand spun down and loaded into 
Prometheus High Sensitivity Capillaries (Nanotemper). DLS measurements were taken at 25°C 
under high sensitivity settings.  Thermal denaturation was performed from 25°C to 90°C using a 
ramp rate of 0.5°C/min. Prometheus Panta software v1.1 (Nanotemper) was used for data 
analysis. 

Developability assays 

Self-interaction, polyspecificity and hydrophobicity were determined by affinity capture-self 
interaction nanoparticle spectroscopy (AC-SINS), anti-insulin and anti-DNA ELISA, and 
hydrophobic interaction chromatography (HIC). AC-SINS was performed as described in Liu et 
al22. ELISAs for polyspecificity anti-DNA and anti-insulin were performed as described in 
Mouquet et al23. HIC was performed as described in Jain et al24. Additionally, for assessment of 
predictive pharmacokinetics of the final candidates, FcRn chromatography was performed as 
described in Schoch et al25. Briakinumab (Leinco Technologies, P/N LT500) and Herceptin 
(Genentech) were used as positive and negative controls, respectively. 

Alanine scanning mutagenesis epitope mapping  

A wildtype HER2 domain IV fragment that corresponds to residues 510-629 of human HER2 
containing a C-terminal His tag was cloned and expressed LQ�6ROX3UR� as described above. 
Residues within 5 Å of trastuzumab were identified from the crystal structure PDB:1N8Z. 
Epitope residues were also selected from published data26. Alanine variants were cloned and 
produced in 96-deep well format. Lysis was conducted according to the protocol described 
above. The reactivity of alanine variants against all experimental mAbs were assessed using 
high-throughput SPR. The SPR experiments were conducted on a Carterra LSA HT-SPR 
instrument equipped with a sensor chip (HC30M) at 25 °C. Surface preparation of the HC30M 
chip was performed using standard amine-coupling reagents. The chip was activated for 600 s 
with a freshly prepared solution of 0.1 M 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) 
(Thermo Scientific), 0.1 M N-hydroxysulfosuccinimide (Sulfo-NHS) (Thermo Scientific), and 0.1 
M MES buffer, pH 5.5 (Carterra). To capture the His-tagged alanine variants, an anti-His 
monoclonal antibody (Sino Biological) was coupled on the activated chip surface for 900 s at 
200 µg/mL diluted into 10 mM sodium acetate, pH 4.5 (Carterra). Unreactive chip surface areas 
were blocked with 1 M Ethanolamine, pH 8.5 (Carterra) for 600 s. 

Twelve replicates of each alanine variant were immobilized onto the pre-functionalized chip 
surface for 1200 s followed by a 60 s washout step for baseline stabilization. The experimental 
mAb assessment was conducted using a kinetics method with a 180 s association phase 
followed by a 180 s dissociation phase. For each experimental antibody injection, three leading 
blanks were introduced to create a consistent baseline prior to assessing the reactivity of 
alanine variants against each antibody. After the leading blanks, a single concentration of each 
antibody at 200 nM was injected into the instrument. After each antibody injection cycle, the chip 
was regenerated with two 120 s injections of regeneration buffer (10 mM glycine, pH 2.0). 
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Data Availability 
Open-source data on the anti-HER2 binders and non-binders and the measured binding 
affinities for all binders are made available atc. The data on functionality, developability, and 
manufacturability for the high-affinity binders that were further characterized are also made 
available. Data from the ACE AssayTM are withheld until formal publication. 

Code Availability 
Code is withheld until formal publication. 

Statistics 
Throughout the main text and methods section, we provide details of the statistics utilized. 
Included in this section is a summary of such methods: 

x Two-VLGHG�)LVKHU¶V�H[DFW�WHVWV�DUH�XVHG�WR�FRPSDUH�ELQGLQJ�UDWHV�LQ�7DEOH 1 and 
6XSSOHPHQWDU\�7DEOH����'HWDLOV�RQ�FRPSXWDWLRQ�DUH�GHVFULEHG�LQ�WKH�³&RPSDULQJ�%LQGLQJ�
5DWHV´�VHFWLRQ�DERYH��:H�FRQVLGHU�D�VLJQLILFDQFH�OHYHOߙ� ൌ ͲǤͲͷ and apply Bonferroni 
corrections with 12 hypothesis tests in Table 1 and 30 hypothesis tests in 
Supplementary Table 1. Upper bounds on p values or precise values are presented in 
the table captions. All precise values can be computed using the data within the tables 
and using the data in Supplementary Table 4 for biological baseline populations. 

x One-sided Mann-Whitney U tests are used to compare enrichments between binders 
and non-binders in Supplementary Fig. 1C, 1E. Scipyd (v1.7.3) was used for 
computation. 

x Pearson R and Spearman ߩ are computed along with their corresponding p values using 
Scipy (v.1.7.3). These values are presented in Supplementary Tables 7 and 9, with n = 9 
and n = 12, respectively. 

x Error bars representing SD are included in Supplementary Fig. 9B, 12B and 12C. 
x Confusion matrices comparing binder/non-binder labeling by the ACE AssayTM and 

surface plasmon resonance (SPR) are presented in Supplementary Tables 2-3. 
Accuracy, precision, recall, and F1-score are presented as well. 

x Discrete histograms are presented in Fig. 2D and 2E and Supplementary Fig. 3A, 3B, 
3C, and 3D. The captions include summary statistics, namely the minimum, maximum, 
median, mean, and SD of the distributions. 

x Box plots are presented in Supplementary Fig. 1C, 1E to compare enrichments between 
binders and non-binders. For these box plots, the center line represents the median, the 
box limits represent the upper and lower quartiles, the whiskers represent 1.5x the 
interquartile range, and the points represent the outliers. 

 

  

                                                           
c https://github.com/AbSciBio/unlocking-de-novo-antibody-design 
d https://docs.scipy.org/doc/scipy/reference/stats.html 
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1. Supplementary Figures 
 

 
Supplementary Fig. 1. Example of ACE assay and identification of binders from 
enrichment scores. (A) Representative overlay of dot plots showing antigen binding (x-axis, 
AF647) and antibody expression (y-axis, BV421) for the antibody library (red), low affinity 
binders (grey), and non-binding controls (black). (B) Representative FACS gating strategy 
used to isolate likely binders from antibody libraries. Gates were set based on non-binding 
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controls. Binders to HER2 are classified in the ACE assay based on median P1 enrichment and 
minimum P2 enrichment across three replicates (Methods). (C) Box plots showing the 
distribution of median P1 enrichment scores for HCDR3 controls separated by binders and non-
binders (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; points, outliers). Binders (n=2203) have statistically significantly higher average median 
P1 enrichment than non-binders (n=2592) [one-sided Mann-Whitney U test, U = 5509390.5, p < 
1 x 10-10]. (D) Plot of HCDR3 controls showing median P1 enrichment scores and minimum P2 
enrichment scores. Sequences in the bottom left quadrant (shaded black) are labeled as non-
binders, whereas sequences in the other three quadrants (shaded orange) are labeled as 
binders. The percentage of sequences in each quadrant that are true binders, according to 
SPR, is shown. Axes truncated to enable better visualization. (E) Box plots showing the 
distribution of median P1 enrichment scores for HCDR123 controls separated by binders and 
non-binders (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range; points, outliers). Binders (n=2270) have statistically significantly higher 
average median P1 enrichment than non-binders (n=3198) [one-sided Mann-Whitney U test, U 
= 7003789.5, p < 1 x 10-10]. (F) Plot of HCDR123 controls showing median P1 enrichment 
scores and minimum P2 enrichment scores. Sequences in the bottom left quadrant (shaded 
black) are labeled as non-binders, whereas sequences in the other three quadrants (shaded 
orange) are labeled as binders. The percentage of sequences in each quadrant that are true 
binders, according to SPR, is shown. Axes truncated to enable better visualization. 
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Supplementary Fig. 2. Sensorgram examples of high-throughput SPR workflow for 
identifying de novo binders. (Left) Two positive controls (binders) are shown, each with two 
replicates. The top-most two sensorgrams show a high-affinity binder; the bottom-most two 
show a low-affinity binder). (Center) Two negative controls (non-binders) are shown, each with 
two replicates. (Right) Two replicates are shown for each of six de novo binders. Each row 
represents one binder. 
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Supplementary Fig. 3. Length and diversity characteristics of de novo designed HCDR3 
binders. (A) Distribution of HCDR3 lengths for zero-shot-designed binders to HER2 (minimum 
of 11, maximum of 15, median of 13, mean of 12.5 ± 0.69 SD). (B) Distribution, on log scale, of 
pairwise edit distances of zero-shot-designed anti-HER2 HCDR3 binders (minimum of 1, 
maximum of 15, median of 8, mean of 7.7 ± 2.1 SD). (C) Distribution of minimum edit distance 
to HCDR3s in SAbDab for zero-shot-designed anti-HER2 HCDR3 binders (minimum of 1, 
maximum of 8, median of 4, mean of 4.46 ± 1.37 SD) (D) Distribution of minimum edit distance 
to HCDR123s in OAS for zero-shot-designed anti-HER2 HCDR3 binders (minimum of 2, 
maximum of 10, median of 6, mean of 5.87 ± 1.38 SD). 
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Supplementary Fig. 4. Sensorgrams of eight selected de novo HER2 binders for 
structural modeling. Each set of SPR sensorgrams represents two replicates of each HCDR3 
design (sequences on top of each set of sensorgrams). 
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Supplementary Fig. 5. Conformational flexibility of de novo designed HCDR3s. Alignment 
of eight selected de novo HER2 binders with trastuzumab-HER2 complex (PDB:1N8Z1) shows 
small overall differences in the antigen (lavender), the heavy chain (gray) and the light chain 
(dark gray) structures in the overall global alignments (RMSD of 1.1-6.8 Å). Large 
conformational differences are observed in the de novo HCDR3 regions when compared to the 
conformation of trastuzumab¶V HCDR3. The trastuzumab HCDR3 loop is colored red and the de 
novo HCDR3 loops are colored blue. The side chains of the HCDR3 are shown as sticks and 
the main chain as loops. 
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Supplementary Fig. 6. Space-filling representation of HCDR3 loops interacting with 
epitope residues.  Epitope residues were selected using a 5 Å cutoff between the HCDR3 loop 
and the HER2 domain IV epitope (computed across all atoms). The trastuzumab HCDR3 loop is 
colored red (top left) and the de novo HCDR3 loops are colored blue. Two distinct epitope 
pockets (Pocket 1 and Pocket 2) that differentially interact with the residues of each HCDR3 can 
be defined. The interacting surfaces between the HCDR3 and the epitope vary based on 
HCDR3 sequence and conformation. 
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Supplementary Fig. 7. Stick representations of HCDR3-epitope interfaces. Epitope 
residues were selected using a 5 Å cutoff between HCDR3 and epitope residues (computed 
across all atoms). The trastuzumab HCDR3 loop is colored red (top left) and the de novo 
HCDR3 loops are colored blue. Epitope residues are labeled according to crystal structure 
PDB:1N8Z. An כ denotes novel epitope residues that interact with the de novo HCDR3 
complexes which are not observed in the trastuzumab-HER2 complex. 
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Supplementary Fig. 8. Developability of 11 de novo designed antibodies by hydrophobic 
interaction chromatography (HIC) for protein surface hydrophobicity assessment. 
Trastuzumab material was analyzed as a sample, whereas Herceptin was used as standard for 
the relative retention time determination of all candidates. 
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Supplementary Fig. 9. Developability of 11 de novo designed antibodies for self-
interaction and polyspecificity assessments. Candidates were evaluated by (A) AC-SINS for 
determination of self-interaction and (B) anti-DNA (top) or anti-insulin (bottom) ELISA for 
determination of polyspecificity. The threshold for acceptable AC-SINS is � 5nm maximum 
wavelength shift. Error bars represent SD. 
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Supplementary Fig. 10. The effects of de novo designed CDRs on FcRn binding for 11 
candidate antibodies determined by FcRn chromatography. Batch control trastuzumab 
material was analyzed as a sample, whereas Herceptin was used as standard for the relative 
retention time determination of samples. 
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Supplementary Fig. 11. Hydrophobicity, self-interaction, polyspecificity, and FcRn 
chromatography of de novo designed candidates 1-3. Results for (A) hydrophobic 
interaction chromatography (HIC), (B) AC-SINS, (C) anti-DNA (top) or anti-insulin (bottom) 
ELISAs, and (D) FcRn chromatography are presented side-by-side for Candidates 1-3. Raw 
data obtained for the assay control briakinumab are shown in selected assays for comparison. 
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Supplementary Fig. 12. Functional assessment of 11 de novo designed antibodies as 
monoclonal antibodies. (A) Cross-reactivity profiles of mAbs. SPR sensorgrams for mAbs 
binding to a panel of HER2 homologs. Each sensorgram is colored according to figure legend in 
the trastuzumab plot. All samples were collected in at least 6 single point replicates with 500 nM 
of each HER2 homolog as analyte. (B) Cell-surface binding assay for measuring mAbs binding 
to HER2+ cell line. HRP absorbances as a function of antibody amount was measured over 5 
orders of magnitude. (C) Antibody-dependent cellular cytotoxicity (ADCC) of Jurkat-Lucia-CD16-
NFAT-Luc reporter cell line against HER2+ cell line. The activity of secretable luciferase was 
measured in supernatant. The luciferase activity is proportional to the degree of CD16a 
engagement. Each value represents the average of triplicate experiments. All titrations are fitted 
to the hill equation. Error bars represent SD. 
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Supplementary Fig. 13.  Surface representation of HER2 domain IV alanine scan epitope 
maps. Residues are colored according to their positions in the trastuzumab-HER2 structure 
(PDB:1N8Z). Residues that are denoted as not critical have no effect on binding when mutated 
to alanine. Partially critical residues preserve binding but show greater than 10-fold reduction in 
binding when mutated to alanine. Critical residues cause a complete loss of binding by SPR 
when mutated to alanine. 
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Supplementary Fig. 14.  Gating strategy for FACS. Cells were gated by A) singlets, B) PI 
staining, C) size, D) kappa light chain expression, and E) HER2 binding. Gates on all 
fluorescent parameters were set based on negative controls. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2024. ; https://doi.org/10.1101/2023.01.08.523187doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.08.523187
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 
 

2. Supplementary Tables 
 

Supplementary Table 1. OAS, OAS-J, and SAbDab HCDR3 length distributions. Frequency 
of HCDR3s appearing in OAS with lengths of 9-17 amino acid residues are shown. OAS-J 
frequency adds the condition that HCDR3s belong to an antibody with the J gene of 
trastuzumab. Frequency of unique HCDR3s in SAbDab with lengths of 9-17 residues. 

HCDR3 Length 9 10 11 12 13 14 15 16 17 

Frequency (OAS) 0.042 0.067 0.105 0.128 0.145 0.156 0.142 0.117 0.099 

Frequency (OAS-J) 0.042 0.089 0.141 0.156 0.165 0.165 0.119 0.077 0.048 

Frequency (SAbDab) 0.097 0.081 0.125 0.14 0.114 0.130 0.119 0.100 0.089 
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Supplementary Table 2. ACE Performance on HCDR3 Controls. Confusion matrix for 
HCDR3 controls indicating binding as measured by SPR and binding as measured by ACE 
(top). Accuracy, precision, recall, and F1-score are shown (bottom). 

 
ACE 

Binder Non-Binder Total 

SPR 

Binder 2089 114 2203 

Non-Binder 101 2491 2592 

Total 2190 2605 4795 

 

Accuracy Precision Recall F1 

95.52% 95.39% 94.83% 0.9511 
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Supplementary Table 3. ACE Performance on HCDR123 Controls. Confusion matrix for 
HCDR123 controls indicating binding as measured by SPR and binding as measured by ACE 
(top). Accuracy, precision, recall, and F1-score are shown (bottom). 

 ACE 

Binder Non-Binder Total 

SPR Binder 2109 161 2270 

Non-Binder 96 3102 3198 

Total 2205 3263 5468 

 

Accuracy Precision Recall F1 

95.3% 95.65% 92.91% 0.9426 
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Supplementary Table 4. Breakdown of sequences experimentally tested for biological 
baseline populations. Number of binders, total number of sequences, and binding rates for 
HCDR3 and HCDR123 across different biological baselines. Permuted sequences were not 
assessed for HCDR123, which is indicated with N/A values. The table on top shows baseline 
populations after filtering out CDRs that contained cysteines and the table on bottom shows 
entire baseline populations. 

Population 
(Cysteines 

filtered) 

# HCDR3 
Binders 

# HCDR3s 
Total 

HCDR3 Binding 
Rate (%) 

# HCDR123 
Binders 

# HCDR123s 
Total 

HCDR123 Binding 
Rate (%) 

OAS 1,278 46,212 2.77 77 44,782 0.17 
OAS-J 508 9,385 5.41 30 9,253 0.32 

SAbDab 74 2,271 3.16 1 1,477 0.07 
Permuted 

Sequences 
13 4,495 0.29 N/A N/A N/A 

 

Population 
(Not filtered) 

# HCDR3 
Binders 

# HCDR3s 
Total 

HCDR3 Binding 
Rate (%) 

# HCDR123 
Binders 

# HCDR123s 
Total 

HCDR123 Binding 
Rate (%) 

OAS 1,334 49,766 2.68 79 49,346 0.16 

OAS-J 521 9,921 5.25 32 9,862 0.32 

SAbDab 75 2,374 3.16 1 1,553 0.06 

Permuted 
Sequences 

16 4,868 0.33 N/A N/A N/A 
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Supplementary Table 5. De novo designs achieve high, calibrated binding rates that 
outperform biological baselines. The top 100, 1,000, and 10,000 sequences by model 
likelihood are sampled and tested experimentally. As the number of selected sequences 
increases, the binding rate decreaVHV��7KLV�LQGLFDWHV�WKDW�WKH�PRGHO¶V�OLNHOLKRRG�LV�FDOLEUDWHG�
with binding. N/A indicates that fewer than 10,000 sequences were sampled for experimental 
testing. * Indicates 2-VLGHG�)LVKHU¶V�H[DFW p < 0.001 against each of the biological baselines 
(OAS, OAS-J, and SAbDab), expect for HCDR3 (k=100) vs. OAS-J with p = 0.0021. ° Indicates 
2-VLGHG�)LVKHU¶V�H[DFW p < 2 x 10-4 against HDFK�RI�WKH�³Incorrect $QWLJHQ´�SRSXODWLRQV��UDW�
HER2, HER3, VEGF) except for HCDR3 (k=100) human HER2 vs. rat HER2 and HER3 at p = 
0.0068 and p = 0.0025, respectively, and HCDR123 (k=1,000) human HER2 vs. rat HER2 at p = 
0.0078. 

Method 
HCDR3 Binding Rate (%) HCDR123 Binding Rate (%) 

k = 100 k = 1,000 k = 10,000 k = 100 k = 1,000 k = 10,000 

Human HER2 13*° 10.6*° 6.99*° 3* 1.8*° 1.33* 

Rat HER2 3 3.3 N/A 0 0.6 N/A 

Human HER3 3 2.4 N/A 0 0.2 N/A 

Human VEGF 2 2.5 N/A 0 0 N/A 
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Supplementary Table 6. Binding rates of AI-designed de novo designs by HCDR3 length. 
Top k binding rates (i.e., the percentage of the top k sequences that were experimentally 
identified as binders) categorized by HCDR3 length for HCDR3 designs (k = 10, 50, 100 for 
each length) and HCDR123 designs (k = 500, 1000 for each length). The baseline binding rates 
are also presented among the entire population, categorized by HCDR3 length for OAS, OAS-J, 
and SAbDab. 

 
Population 

HCDR3 Length (Binding Rate (%)) 

9 10 11 12 13 14 15 16 17 

HCDR3 k = 10 90 20 0 0 10 0 50 0 0 
k = 50 54 22 0 6 14 0 24 0 0 

k = 100 53 18 1 8 20 1 17 0 2 
OAS 14.39 5.77 3.46 4.64 2.60 1.38 0.59 0.45 0.50 

OAS-J 15.67 4.97 5.77 10.80 5.94 3.05 1.94 1.17 1.54 
SAbDab 9.65 3.68 3.42 5.01 3.88 1.68 0.74 0.5 0 

HCDR123 k = 500 1.4 10.4 1.2 0.6 0.6 0.4 0.6 0.2 0.2 
k = 1000 2.4 9.2 0.9 .4 0.4 0.4 0.4 0.2 0.1 
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Supplementary Table 7. Properties of diverse HCDR3 candidates selected for 3D 
structural modeling. We selected HCDR3 candidates based on affinity, length, and edit 
distances (ED) to trastuzumab (top). We computed RMSD values over all main chain and side 
chain atoms from the alignment of HCDR3 residues, excluding all other atoms from calculations. 
We calculated grand average of hydropathy values (GRAVY) for HCDR3 residues by averaging 
the hydropathy values of each residue and dividing by sequence length2. We computed the 
Pearson and Spearman correlations between affinity and all other properties (bottom). No 
significant correlations are seen between affinity (െ ���ଵ଴ሺܭ஽ሻ ԛሺܯሻ) and any of interface area, 
RMSD, or hydropathy. 

HCDR3 (Length) [ED] െࢍ࢕࢒૚૙ሺࡰࡷሻ ԛሺࡹሻ Interface (Å2) RMSD (Å) Hydropathy 
SRWGGDGFYAMDY (13) [0] 8.71 771 0.000 -0.81 

ARWGNYYYYMDY (12) [6] 8.77 739 2.435 -1.30 

ARYYYGFYYFDY (12) [7] 8.92 819 2.832 -0.73 

ARYAGVERPGSFAY (14) [11] 6.24 764 1.107 -0.42 

TRYFFNGWYYFDV (13) [9] 9.03 843 1.974 -0.37 

AFADSGAYGIWSF (13) [12] 7.00 824 5.738 0.57 

ANDIYIQGYDLNR (13) [12] 8.40 833 5.506 -0.80 

ARGYSGDWPYETFYV (15) [10] 7.01 863 6.767 -0.76 

ARYDYGYYIYVS (12) [10] 8.02 718 3.032 -0.43 

 

Metric Pearson vs. Affinity 
 

Spearman vs. Affinity 

R p ȡ p 

Length -0.67 0.048 -0.55 0.126 

Edit distance -0.54 0.132 -0.67 0.048 

Interface (Å2) -0.04 0.915 0.1 0.797 

RMSD (Å) -0.32 0.399 -0.33 0.380 

Hydropathy -0.48 0.193 -0.3 0.432 
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Supplementary Table 8. Product quality assessment of candidates reformatted as mAbs 
expressed in CHO cells. Determination of concentration, melting temperature (Tm), 
aggregates using size exclusion chromatography (SEC), colloidal particle size distribution (PDI), 
fragments using non-reduced capillary gel electrophoresis (non-reduced CGE), overall purity 
using reduced capillary gel electrophoresis (reduced CGE), and identity using deglycosylated 
intact mass for the 11 candidates reformatted into mAbs and trastuzumab produced by CHO 
cells. ND = not detected. 

Candidate HCDR3 sequence Conc. 
(mg/mL) 

Tm 
(°C) 

SEC Polydispersity 
index, PDI 

Non-reduced CGE Reduced CGE Intact 
mass 

HMW (%) Main (%) LMW (%) LMW (%) Main (%) HMW (%) Impurities (%) Purity (%) Identity 
1 TRYFFNGWYYFDV 2.22 70.8 11.8 87.6 0.6 0.05 0.7 70.8 2.2 ND 100.0 Confirmed 

2 ARYYYGFYYFDY 1.60 70.6 0 99.4 0.5 0.04 0.8 70.6 ND ND 100.0 Confirmed 

3 ARWGNYYYYMDY 1.94 70.4 0 99.4 0.5 0.08 0.7 70.4 ND ND 100.0 Confirmed 

4 ANDIYIQGYDLNR 1.79 80.2 ND 98.5 1.5 0.08 1.6 80.2 ND ND 100.0 Confirmed 

5 ARYYGYGGYYFDY 1.77 71.9 0 99.8 0.2 0.04 3.4 71.9 ND 8.3 91.7 Confirmed 
6 ARWGGDFYAMDY 1.72 70.5 1.9 97.5 0.6 0.07 2.4 70.5 ND 0.5 99.5 Confirmed 

7 ARWYGYGGYYFDY 1.99 70.7 ND 99.7 0.3 0.05 1.2 70.7 ND 0.5 99.5 Confirmed 

8 ARYGYAPGFYYMDV 2.10 70.3 ND 99.8 0.2 0.06 1.3 70.3 ND 0.6 99.4 Confirmed 

9 TRWGGYYYFDY 2.24 70.0 ND 99.9 0.1 0.04 0.6 70.0 ND 0.4 99.6 Confirmed 

10 APYGPGYWYGV 2.18 72.0 ND 99.8 0.2 0.07 3.0 72.0 ND ND 100.0 Confirmed 

11 ARYYYDYYYYFDY 2.02 75.7 ND 99.9 0.1 0.05 0.9 75.7 ND ND 100.0 Confirmed 
Trastuzumab SRWGGDGFYAMDY 2.08 79.5 1.8 96.1 2.1 0.11 5.2 79.5 ND ND 100.0 Confirmed 
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Supplementary Table 9. Comparison of the HER2 binding affinities of candidates as Fabs 
and as reformatted mAbs. SPR was used to determine the binding affinities of purified Fabs or 
reformatted mAbs of the 11 candidates and trastuzumab to human HER2. Experiments were 
run in replicates. The mean ܭ஽ and standard deviations are presented. Correlations between 
Fab ܭ஽ and mAb ܭ஽ are Pearson R = 0.84 (p < 0.001) and Spearman Rho = 0.78 (p < 0.003). 

Candidate HCDR3 sequence 
Mean KD to human HER2 

Fab 
(nM) 

S.D. 
(Fab) 

mAb 
(nM) 

S.D. 
(mAb) 

1 TRYFFNGWYYFDV 1.93 1.59 3.41 1.78 
2 ARYYYGFYYFDY 1.58 0.99 4.16 2.48 
3 ARWGNYYYYMDY 1.40 1.19 3.85 1.50 
4 ANDIYIQGYDLNR 2.45 2.27 3.67 2.94 
5 ARYYGYGGYYFDY 7.20 3.62 9.75 2.32 
6 ARWGGDFYAMDY 6.99 2.09 6.66 3.00 
7 ARWYGYGGYYFDY 5.67 2.95 7.04 0.73 
8 ARYGYAPGFYYMDV 9.27 1.91 6.61 2.72 
9 TRWGGYYYFDY 6.70 2.50 8.89 1.55 

10 APYGPGYWYGV 7.15 4.67 7.99 2.68 
11 ARYYYDYYYYFDY 6.22 2.71 5.63 3.99 

Trastuzumab SRWGGDGFYAMDY 1.38 0.82 1.61 1.07 
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Supplementary Table 10. Cross-reactivity kinetic parameters of candidates as 
reformatted mAbs. SPR was used to determine the binding affinities of the 11 candidate mAbs 
and trastuzumab to human HER2 as well as HER2 homologs from mouse, cynomolgus and 
canine. Binding affinities against family members HER1, HER3, and HER4 were also 
determined. Experiments were run in replicates. The single, high concentration injection of 
antigen (1 uM) and the mean ܭ஽ in nM and standard deviations are represented. N/A = binding 
not detected. 

Candidate Human HER2 
 

Mouse HER2 
 

Cynomolgus HER2 
 

Canine HER2 Human HER1 
 

Human HER3 
 

Human HER4 

Trastuzumab 6.2 ± 4.9 N/A 25.2 ± 12.5 7.8 ± 1.6 N/A N/A N/A 
1 6.3 ± 4.1 N/A 49.8 ± 15.2 13.1 ± 3.0 N/A N/A N/A 
2 4.6 ± 3.2 N/A 32.9 ± 6.8 7.6 ± 3.8 N/A N/A N/A 
3 4.0 ± 4.3 N/A 4.6 ± 5.7 1.5 ± 1.1 N/A N/A N/A 
4 4.8 ± 6.0 N/A 43.7 ± 34.5 4.8 ± 4.2 N/A N/A N/A 
5 14.8 ± 3.3 N/A 254.2 ± 41.1 119.0 ± 6.7 N/A N/A N/A 
6 8.9 ± 6.8 N/A 60.9 ± 23.8 18.5 ± 5.6 N/A N/A N/A 
7 11.5 ± 4.9 N/A 171.0 ± 39.1 91.6 ± 18.7 N/A N/A N/A 
8 9.0 ± 9.9 N/A 120.2 ± 9.8 37.6 ± 6.7 N/A N/A N/A 
9 16.4 ± 5.9 N/A 198.7 ± 7.6 103.4 ± 7.9 N/A N/A N/A 

10 17.5 ± 8.9 N/A 151.3 ± 20.9 5.0 ± 1.8 N/A N/A N/A 
11 5.0 ± 4.4 N/A 104.1 ± 8.9 36.6 ± 2.4 N/A N/A N/A 
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Supplementary Table 11. Domain IV epitope maps of the 11 candidate mAbs bound to 
HER2. Alanine scanning mutagenesis was used to mutate residues within 5 Å of trastuzumab 
Fab in PDB:1N8Z. Residues are colored according to their effects on HER2 binding by mAbs 
according to legend: green=not critical, blue=partially critical, red=critical. Residues that make 
important interactions with the heavy chain are underlined.  

HCDR3 sequence HER2 Domain IV Epitope 
Trastuzumab  EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

1 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

2 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

3 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

4 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

5 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

6 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

7 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

8 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

9 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

10 
EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 

11 EYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFP 
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