

High throughput SPR in DNA-encoded library screening

⊕ gsk.com

- What is DNA-encoded library screening?
- What are our current workflows?
- Why Carterra LSA^{XT®}?

DNA Encoded library synthesis

Repeat for additional cycles

DNA Encoded library synthesis

DNA Encoded library selections

Created with BioRender.com

DNA Encoded Library workflow

Adapted slide from Melissa Grenier-Davies

Biophysics in DNA Encoded Library screening

- Are the proteins folded?
 - CD
 - DLS
 - aSEC
 - DSF
 - HDx
- · Do the proteins have expected function?
 - Tool binding?
 - Biochemical activity?

- Conditions?
 - Conformational state
 - Homo / hetero multimer?
 - Buffer/ pH / +/- tools/ cofactors?
- Modality specific considerations?
 - What is the most relevant data?

- What compounds get prioritized for off-DNA re-synthesis?
 - on-DNA synthesis
- Orthogonal binding assays
 - SPR
 - Thermal shift
 - MST
 - Proximity-based assays
 - FP
- · Mechanism of action studies
 - Structure
 - Be-spoke biochemistry
- Cellular studies
 - Phenotypic readouts
 - CETSA

Biophysics in DNA Encoded Library screening

- Are the proteins folded?
 - CD
 - DLS
 - aSEC
 - DSF
 - HDx
- · Do the proteins have expected function?
 - Tool binding?
 - Biochemical activity?

- Conditions?
 - Conformational state
 - Homo / hetero multimer?
 - Buffer/ pH / +/- tools/ cofactors?
- Modality specific considerations?
 - What is the most relevant data?

- What compounds get prioritized for off-DNA re-synthesis?
 - on-DNA synthesis
- Orthogonal binding assays
 - SPR
 - Thermal shift
 - Proximity-based assays
 - MST
 - FP
- Mechanism of action studies
 - Structure
 - Be-spoke biochemistry
- Cellular studies
 - Phenotypic readouts
 - CETSA

DEL-hits can be resynthesized with a DNA tag

Repeat for additional cycles

DEL-hits can be resynthesized with a DNA tag

Carterra LSA^{XT®} allows massively parallel immobilization

Multi-channel mode

Single-channel mode

DNA barcode provides a handle for compound immobilization

on-DNA compounds bind target

on-DNA compounds bind target

On-DNA compounds are impure mixtures

Su et al., Bioconjugate Chemistry, 2021, 32, 5, 1001-1007

- Can we get kinetics with impure immobilized ligands?

GSK *data collected using a SAD200M chip; figure created with biorender.com

DNA barcode provides a handle for compound immobilization

Can detect evidence of binding at < 1% purity!</p>

GSK

Purity

Higher surface densities allow flagging low-purity binders

0.04% purity, high density

0.04% purity, low density

Lower surface densities enable better kinetics

80% purity, high density

80% purity, low density

- Biophysical assays play an important role in every step of a screening campaign
- On-DNA resynthesis and Carterra LSA^{XT®} combine to allow high-throughput binding assays
- This enables us to make decisions on chemistry resource investments, including synthesis of compounds that may not have been obvious during data analysis
- "reversed" assay can improve signal-to-noise, opening the door to traditionally harder targets

- Acknowledgements

GSK

Joshua Alper (now at Magnet) Mark Mantell Lisa Marcaurelle Chris Dimitri Robert Hale

Carterra

Nicholas Abuid Perry Ripa

Thank you! Questions?

