High-throughput antibody discovery and screening

Sharandip Nijjar Carterra Symposium Utrecht

The translational gap

Discovery

Early research

- Strong scientific
 rationale
- Novel target, mechanism
- Biomarkers

Translation

- Designing molecules/ assays
- Navigating
 development
- Protecting innovation

Development

- Therapeutics
 suitable for further
 development
- Diagnostics ready
 for clinical trials

Market approval

01 Neuro-

degeneration

Translational Challenge:

Motor Neuron Disease

02

Respiratory Health

Translational Challenge:

Chronic Respiratory Infection Global Health

03

Translational Challenge:

Anti-Microbial Resistance

Neglected Tropical Diseases

Emerging Viral Threats $\sim \sim$

Rare

Disease

Challenge:

Centers of

excellence

Translational

EB repurposing call

05

Childhood Cancer

Translational Challenge:

Currently defining strategy

LifeArc's translational centres

Edinburgh

Molecular diagnostics

•

٠

- Platform and biomarker development
- Full ISO accreditation
 - Focus on early therapeutics discovery
- Small molecule and antibody modalities
- Biologics discovery and development, Chemical Biology and Molecular Cellular Pharmacology teams in one place
- Fully-human antibody discovery platform
- Based at the Francis Crick Institute

Antibody discovery and humanisation

Antibody discovery

testing of surrogates.

Evolutionary Tree grouping. Many 1,000s

Cluster and

Antibody discovery capabilities: Single B-cell platform and HT Ab production for screening

LifeArc

Streamlining the screening cascade

Antibody panel (~1500s of Antibodies)

Phase 1: High throughput characterisation (100s of Antibodies)

Phase 2: Lead triaging (<50 of Antibodies)

Most promising hits are produced in larger amount and comprehensively assessed to identify the lead candidate with the best therapeutic and developability potential. Lead selection 1-10 antibody

Antibody humanisation

We can work with parent antibodies from any species: mice, hamsters, rats, rabbits, chickens, camelids...

We have experience of humanising antibodies against different target classes The therapeutic candidate molecules can be of various modalities: IgG of different subclasses or with tailored effector function or Fab, VHH, VHH-Fc, VH-Fc... Our humanisation projects focus on reproducing the binding and functional properties of the parent molecule whilst maximising developability

Our Success

- We have over 30 years of experience
- 98% success rate

 ~20 antibodies, humanised by us are currently in clinical pipelines

Humanisation design for an IgG

Screening of humanised variants

~300 Variants Automated high throughput expression for screening 4-6 variants Lead candidate panel assessment

1-2 variants Lead and backup antibodies

Delivery of lead antibody with binding and functional properties of the parent molecule and maximised developability

- Comprehensive humanisation report to assist with patenting and publications
- ✓ Ongoing translation Advise
- Collaborator retains IP ownership and onward commercialisation control

Developability assessment with Pharma -standard suite of assays

Collaborator's functional assays (10 mg of each antibody supplied)

Making more informed decisions quicker

Triaging Required for Kinetics and Affinities

- Throughput of the System
- Sample consumption

Improvements in automations, reduced sample consumption, and optimisation in Data workflow

- Carterra LSA allows Kinetics, Specificity and Epitope binning on larger number of Candidate
- More data collected
- More informed decisions on which candidates to carry forward

Kinetics

Kinetics

- Detailed kinetic analysis (ka/kd) and/steady state affinity
- Covalent or non-covalent
 attachment
- Crude or purified sources

Assay set up

Data processing

Raw data

- Reference data
- Y-off set
- Double reference
- Y align serial view
- Apply baseline correction
- Crop
- Fitted using ka/kd model

Kinetics Overview

Array view

Kinetics snapshot

Kinetics table

1	۵	R	C	D	F	F	G	н	1	1	K	1		
1			C	U	L		Link Group 1			,	ĸ			
2				_			Link Group 1	Ana	lvte 1					
3				_	k _a (M-1	s-1)	<i>k</i> _d (s-	1)		Rmax (F	RU)			
4		RUI ID	Name	Group	Value 👻	Error 👻	Value 👻	Error 👻	k _D (M) -	Value 👻	Error 👻	Res SD 👻		
5		1	mAb1	Set 1	1.95E+05	± 1.1e4	8.40E-05	± 7.4e-6	4.31E-10	6.91E+01	± 1.2	8.24E+00		
6		5	mAb2	Set 1	1.74E+06	± 7.8e4	2.00E-03	± 2.2e-5	1.15E-09	1.76E+02	± 1.4	1.34E+01		
7		9	mAb3	Set 1	5.80E+05	± 2.7e4	2.38E-03	± 3.1e-5	4.11E-09	1.72E+02	± 1.6	1.24E+01	Name	k _D (N
8		13	mAb4	Set 1	5.89E+05	± 3.4e4	1.10E-04	± 7.9e-6	1.86E-10	6.97E+01	± 1.2	9.51E+00	mAb1	4.31E-
9		17	mAb5	Set 1	1.35E+06	± 6.7e4	5.85E-03	± 1.1e-4	4.33E-09	1.88E+02	± 1.6	1.25E+01	mAb1	2 40E
10		21	mAb6	Set 1	2.91E+06	± 2.3e5	3.93E-04	± 1.2e-5	1.35E-10	9.35E+01	± 2.8	1.17E+01	IIIADI	3.40E-
11		25	mAb7	Set 1	6.65E+05	± 4.0e4	1.40E-03	± 1.9e-5	2.11E-09	1.14E+02	± 1.2	1.14E+01	mAb23	6.91E-
12		29	mAb8	Set 1	1.23E+05	± 5.1e3	5.88E-04	± 7.9e-6	4.79E-09	1.20E+02	± 1.8	6.13E+00	mAb23	6.99E-
13		33	mAb9	Set 1	1.11E+06	± 1.6e5	7.21E-02	± 9.2e-3	6.51E-08	1.72E+02	± 3.6	1.43E+01	IgG4 isotype control	N/A
14		37	mAb10	Set 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		, NI/A
15		41	mAb11	Set 1	1.46E+05	± 1.0e4	5.41E-05	± 5.2e-6	3.71E-10	9.77E+01	± 3.8	5.03E+00	-ve control	N/A
16		45	IgG4 isotype control	Set 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Buffer	N/A

Iso-affinity plot

Affinity and Cross Reactivity

- 192 mAb supernatants tested at 10ug/ml
- Screened against 5 antigens
- HC30M chip used
- Same screen via ELISA with analysis took 1.5 months

Cross-reactivity	No candidates
Hu Antigen-1/cyno	89
Hu Antigen-1/mo/cyno	48

- 123 mAbs bound & 27 mAbs bound with sub-nanomolar affinity
- 35 mAbs bound to Antigen-1
- 88 mAbs bound to Antigen-2

Epitope Binning

High Throughput Epitope Binning

Purified Antibodies

- Purified mAb are covalently coupled to the chip surface
- Antigen is first injected over the covalently coupled mAb-surfaces followed by the injection of the second mAb
- After the end of each cycle, the covalently coupled mAb surfaces are regenerated
- Cycles are repeated, 49x49 mAbs were tested

Monovalent Antigen: Classical Binning

High Throughput Epitope Binning

Supernatants

- An Anti-human IgG FC surface using the standard EDC/NHS surface chemistry is made
- mAbs are captured Anti-human IgG FC surface then crosslinked using BS3
- Following a blocking injection of irrelevant human IgG, Antigen is first injected over the covalently coupled mAb-surfaces followed by the injection of the second mAb
- After the end of each cycle, the covalently coupled mAb surfaces are regenerated
- Cycles are repeated, 56x56 mAbs were tested

Monovalent Antigen: Classical Supernatant Binning

Epitope Binning with Sups

- When we had a well-behaved antigen this worked well and we able to screen 56x56 antibodies
- Issues with unstable antigen, or when the antigen is not monovalent some further optimisation required.
- If the Antigen is unstable the experiment can be split into smaller number of cycles (20-30 mabs a day), the data can then be merged and analysed together. Temperature can also be reduced
- If the antigen is not monomeric the antigen and second antibody can be pre-mixed before flowing on the chip
- Stickiness to the of antigen or sups include 0.1-0.5% BSA into the buffer
- The experiment is cleaner with purified antibodies, we have introduced HT plate-based purification
- Important to include both positive and negative controls within the panel

Epitope Binning Software User Interface

Data linked across 3 visualisation panels

Senograms

Networks plots

Combined Dendrogram

Heat map generation

- A feature of the software is that it allows you to add additional data such binding and sequence data
- This can be then visualised on the heat map and network plots

Carterra Color Key					
	Self-Self Interaction				
	Competitor				
	Non-Competitor				
	Asymmetric				

Linking Binning data with Kinetics Data

- We were able to separate out the data for each antigen
- Kinetics data can be linked (shown below as heat map on the left-hand side of each plot)

Summary

- The Carterra LSA has been a great asset in our efforts to streamline our screening process
- It allows for lower sample consumption, reduced timelines and complete data package for a diverse range of antibodies.
- SPR has always been carried out on smaller number of down selected clones, the LSA has allowed us to shift SPR upstream to screening
- It has enabled easier triaging of candidates which we struggled with in our traditional ELISA approach
- Epitope binning allows us differentiate from the prior art in order to have the best chance of securing IP and maintaining epitope diversity. We are now able to get this data earlier in the screening process
- Certain epitopes can relate to function so we can now select candidates from different pools to increase our chances of identifying a functionally active lead candidate

Thank you