High-Throughput Nanobody Design: Integrating Machine Learning with Rapid Cell-Free Expression

Sasen Efrem, MSc; Senior Scientist

ordaos

Outline

1. Ordaos Technology & Strategy

- \rightarrow Lab-in-the-loop AI-derived binders against disease-specific targets
- \rightarrow Nanobodies and their Advantages
- \rightarrow Cell-Free Expression (CFE)

2. Rapid Screening

- \rightarrow Carterra LSA® platform:
 - High-throughput screening with correlated crude/pure binding data
 - Epitope binning: Evaluating binding/competition profiles
- \rightarrow Wet Lab QC

3. In Vitro Evaluations

 \rightarrow Cell binding assays: Confirm binding in biologically relevant contexts

4. Engineering Function

→ Strategic multimerization: Bispecifics/multivalents to bridge targets and drive activity

Ordaos Reimagines Biologics Discovery As Biologics Design

Lab-in-the-loop Genai-designed Mini-proteins & Single Domain Antibodies

Ordaos provides Nanobody and De Novo Protein Solutions

Ai-driven Small Protein Solutions For Next-generation Biologics

Nanobody Therapeutics: Key Advantages at a Glance

Biophysical Features Enabling Novel Therapeutic Modalities

Caplacizumab (Cablivi) Bivalent (homodimeric) Nanobody

- Genetic simplicity → A single cDNA (≈ 400 bp) encodes the complete binding unit. No need to co-express and correctly pair heavy + light chains.
- Very small size (~15 kDa) → superior tissue penetration (including blood-brain barrier) and the ability to reach smaller epitopes
- High physicochemical stability \rightarrow withstands extreme pH, temperature,
- freeze-thaws; rapidly refolds, enabling room-temperature storage
- Low-cost, high-yield microbial production \rightarrow expresses efficiently in E. coli, yeast,
- and CFE (no need for chaperones/expensive mammalian cell culture)
- Modular engineering → simple genetic fusions create multivalent, multi-specific molecules, e.g. bi-specific formats, albumin-binding formats to improve half-life
 Reduced immunogenic risk → humanized VHHs resemble human VH3 domains
- and lack an Fc region, lowering possibility for immune side effects
- Regulatory proof-of-concept → FDA-approved Caplacizumab shows nanobodies can meet safety, efficacy and manufacturing standards

Constant Scaffold with ML-Driven CDR Diversification

Backbone And Tags Stay Fixed While Machine-learning Guides Sequence Variation Only Within CDR1-3

Ordaos Proprietary Cell-Free Expression Platform

From -80 °C Freezer Stocks To Functional Protein In < 2 hours

- Rapid Protein Generation \rightarrow 60–90 min expression run; complete freezer-to-protein cycle in under two hours.
- Cost-Efficient & In-House Controlled \rightarrow reduces per-sample cost and gives greater flexibility to optimize reaction conditions.
- Engineered E. coli Lysate \rightarrow Mechanically lysed e. coli strain engineered for high soluble yield.

•Minimal Reagent needed \rightarrow 20 µL-scale reactions (ng production) produce enough protein for Carterra screens.

- Flexible DNA template \rightarrow Accepts both linear DNA or plasmids.
- Handles "Difficult" Targets \rightarrow Toxic, membrane, or

aggregation-prone proteins expressed without the constraints of live-cell growth.

• Easily Scalable & Automatable \rightarrow 2–50 µL reactions in 96- or 384-well plates; compatible with liquid-handling robots.

Cell-Free-Expressed Caplacizumab Binds vWF with Native Affinity

Purified CFE Product Yields Correctly Folded, Active, Disulfide-bonded VHH

Lane 1: Mammalian produced VHH Lane 2: Ladder Lane 3: CFE produced VHH; C-tag Purified Functional CFE Nanobodies → CFE-produced Caplacizumab (nanobody monomer), binds to von Willebrand factor (vWF), demonstrating the capability of our CFE system to produce properly folded, disulfide-formed, functional nanobodies

Our fully integrated RL-guided GenAI tailors proteins to disease specifictargets

orda<mark>ō</mark>s

Optimizing Linker and Tag Strategies for Enhanced SPR Performance and Purification

Maximizing SPR Retention and Purification Efficiency through High-Affinity Tag

Changing type of spacer/linker

Changing order and length of linker

•Linker Optimization \rightarrow Discovered that the 3xHA tag outperforms the 1xHA tag in terms of SPR performance.

- Achieved picomolar capture affinity for our Nanobodies with 3xHA tag
- Excellent retention on SPR chip, even remains after glycine pH 2.0 regeneration.

Tag Order Doesn't Impact Performance → Modulating tag order had minimal effect on retention and affinity.
 C-Tag for Purification → Used for protein purification, also providing high specificity and affinity with our method. We may pivot this tag for capture as well, as the anti-Ctag VHH is extremely stable/regeneratable

Iterative ML-Driven Binder Optimization

Iteration Strategy: Computational design, rapid screening, and ML feedback in a closed loop to Refine binders

Ordaos Utilizes Crude CFE Screening with Carterra LSA

Shorter Iteration Time Means More Data And Faster Improvement

High-Quality Binder Screening on Carterra LSA with µL-Scale CFE Lysate

High-Throughput Assessment of Candidates is possible with Carterra LSA

- Crude binding done with 20 μL CFE material and 1 μL DNA
 - 2 wells per plate used for negative and positive control
- Duplicates performed for all samples enabling 188 candidates tested per run

Nanodiscs: GPR Binder Screening on Carterra LSA with µL-Scale CFE Lysate

Binder screening against difficult membrane-bound GPCR targets

- Nanodisc prep \rightarrow GPCRs reconstituted in-house or sourced commercially, preserving native conformation for SPR.
- Crude lysate screen $\rightarrow \mu$ L-scale CFE lysate identifies high-affinity, GPCR-specific binders

Ordaos generates validated proteins from AI designs in days

SHORTER ITERATION TIME MEANS MORE DATA AND FASTER IMPROVEMENT

Crude Lysate Screening Accurately Predicts Purified Protein Binding

Comparable Kinetics Observed With Both Crude And Purified Formats

Carterra LSA Crude Lysate vs Purified Binding Affinity

• Strong agreement \rightarrow (R = 0.96; ρ = 0.92) between KD measured in CFE crude lysate and the same binders after purification via c-tag

- High correlation means we can rank candidates directly from crude reactions, then purify only the top hits for confirmation
- Validates crude-lysate SPR as a reliable, high-throughput strategy for our ML-driven optimization loop
- Saves time and materials → Cuts days and consumables out of each design cycle while maintaining data quality

Epitope Binning to Characterize Nanobody Binding Profiles

Assessing Epitope Overlap and Competition with Natural Ligands and Commercial Antibodies

Natural Ligar latural Li 5 Deriv ORD Lea ORD 5 Deriv2

• Binning \rightarrow Carterra LSA groups nanobodies into distinct epitope communities based on competition profiles

• We can also understand potential steric clashes between nanobody candidates that compete but are known to have distinct epitopes based on HDX data

 Natural Ligand & Commercial Benchmark→ With epitope binning, we can see whether our nanobodies compete/share epitopes with commercial antibodies as well as the target's natural ligand

• Candidate Selection \rightarrow Informs rational combinations and bispecific designs based on epitope relationships.

Cell Binding Assessment of Purified Nanobody Candidates

Flow Cytometry to Confirm Target Engagement on Cells

 Validated & Purified Binders → Among binders that bind and pass QC thresholds, candidates advance to cell-binding assays to determine whether binding is also seen *in vitro*

Strategic Multimerization to make Functional Molecules

Bispecific Reformatting and Avidity Optimization Yield Clinically Relevant Functional Responses

Nanobodies against different protein targets

- Multivalency Enables Function → In cases where bridging of multiple proteins is required for function, we engineer multivalent molecules
 - Nanobodies are selected with kinetics matched to cell surface target density
 - Linker configurations guided by in silico modeling

Summary

- ML-Guided Binder Design → Rapid generation of high-affinity candidates against disease targets.
- High-Throughput Cell-Free Expression \rightarrow Produce and screen crude lysates at μ L-scale
- Carterra LSA-Powered Screening → Identify hits with crude-to-pure correlation and map epitope diversity via binning
- $QC \rightarrow$ Evaluate stability, producibility, aggregability of binders.
- In Vitro Binding Validation → Determine cell-binding activity and prioritize candidates with therapeutic potential.
- Functional Engineering → Optimize via multimerization or fusion strategies to enhance avidity and mechanism-specific activity.

Thank you! Let's Connect!

in

https://ordaos.bio/

Human-enabled

Machine-driven De novo designed miniproteins to help drug hunters deliver life-saving treatments.