

Rapid VHH Antibody Discovery by Single B-Cell Platform at Curia

Uria U

Yadong Yu, Ph.D. Senior Scientist Curia Bio (Hayward, CA) June 24, 2025

Hayward Discovery Biologics

Site

We welcome you at Curia's Hayward facility, located in California, US. Here, we support you across all of your early drug discovery needs.

Capacity

- 38,000 ft²
- 300+ DNA Molecular Constructions per week
- Gram scale DNA plasmid production
- 300+ L transient mammalian protein production per week
- 40-60+ annual Discovery & Engineering programs

Contact

21021 Corsair Blvd, Hayward, CA 94545 Phone: 1-650-288-4891 x51019 antibody@curiaglobal.com

+

Core technologies

- PentaMice[®] platform
- Beacon[®] optofluidic system for human, mouse, rat, and llama single B cell Ab discovery
- Tuna293SM and TunaCHOSM expression systems
- XOMA[®] fully human scFv and FAB libraries
- High-throughput (HTP) protein production
- Carterra[®] LSA[®] and Octet[®] BLI systems
- HTP flow cytometry

Quality & regulatory

- AAALAC vivarium accreditation
- Hayward is a non-GMP site.

Products & services

- Recombinant DNA production
- Mammalian protein expression (Ab/BsAb, Ag, AAV)
- Rodent, llama, and rabbit immunizations
- Ab discovery: Hybridoma, Single B cell, Phage- and Yeast-Display
- Affinity maturation
- Antibody humanization
- Ab characterizations (kinetics, epitope binning, and binding potency)
- Developability analysis

PROUDLY, AN

ACCREDITED

PROGRAM

Curia's Antibody Discovery, Engineering & Characterization (ADEC) Team & Services

Discovering high quality antibodies! 200+ successful discovery campaigns

Antibody Discovery Workflows Utilize State-of-the-Art Hybridoma, Single B Cell, and Display Technologies to Deliver Quality Leads

Curia's State-of-the-art Single B Cell Screening Workflow

Figure 1. Curia's state-of-the-art single B cell screening workflow. An immunization and screening strategy is designed based on the desired features of the discovered VHH. Llama's are immunized and in-life plasma titer checks are used to monitor antibody generation and inform subsequent booster injections. Once sufficient titers are reached, the memory B cells are harvested from PBMC and activated into antibody secreted cells. These cells are then imported into the Beacon[®] system. Up to 80,000 individual B cells are clonally distributed into NanoPens[®] where they secrete IgG. Time-lapse fluorescent microscopy is used to screen the B cells. The top hits selected are advanced to cDNA synthesis for B cell receptor sequence recovery using Sanger sequencing. Lead candidates are selected for high-throughput recombinant productions using Curia's Tuna CHO[™] platform. Additional characterization assays such as kinetics, functional neutralization, and epitope binning can be performed on purified VHH.

Reasons for VHH antibody

Advantages

- VHH antibodies are heavy chain only antibodies.
- Easy to penetrate tumor tissues
- Easy to access small cavities or epitopes otherwise not accessible by conventional Ab
- Easy to clone and express
- Easy to be paired with other modality for bispecific

(a) Human VH (PDB: 70BF)

(b) Camelid-derived VHH (PDB: 1JTT)

MABS 2024, VOL. 16, NO. 1, 2341443 https://doi.org/10.1080/19420862.2024.2341443

Case Study – anti-CD200R1 VHH Antibody Discovery by Single B Cell

Rapid Discovery of Antagonistic Human/Cyno CD200R1 Llama VHH Nanobodies Using Single B Cell Technology curia

Nicole Polewaczyk¹, Dan Luo¹, Damon Jian¹, Ke Zou¹, Hsun-Hui Yang¹, Molly Smith¹, Yadong Yu¹, Vincent Pai², Samuel Hinman², Julie Perreau², Margaret Wong Ho¹, Brian A. Zabel¹, Christine L. Hsieh¹

Curia Bio, Inc.¹, 21021 Corsair Blvd., Hayward, CA 94545 Bruker Cellular Analysis², 5858 Horton Street, Suite 320, Emeryville, CA 94608

Highlights:

- Strong plasma titer reached 57 days following initial animal immunization
- Rapid discovery: < 1 month from Beacon assays to unique hits sequencing results
- High-throughput screening: 20k single B cells screened in one day (scaleable up to 80k single B cells for a multipleday workflow)
- Diverse antibody hits recognizing different epitopes on target
- hu/mu/cyno cross-reactive hits
- ~60% hits are CD200R1 neutralizing Abs (*i.e.* blocking CD200 binding to CD200R1)

Poster by Curia and Bruker presented at PEGS May 2025

Biologics

Background and Scope

Background

- CD200R1 is a cell surface receptor that plays a key role in regulating immune responses.
- The interaction between CD200R1 and its ligand, CD200, delivers an inhibitory signal leading to the suppression of immune responses.
- The CD200/CD200R1 interaction has autoimmune, inflammatory, and oncology implications.

Scope

- Discover diverse antagonistic antibody hits against CD200R1
- Improve the antibody discovery timeline by using the single B-cell technology
- Comprehensive antibody hits characterizations including Carterra Kinetics and Epitope binning analyses

Figure 2. Proposed mechanisms elucidating the pro-tumorigenic role of CD200/CD200R signaling in cancer progression. CD200/CD200R signaling promotes an immunosuppressive TME by (**A**) inhibiting

NK cell activation through decreased NKp44 and NKp46 expression, (**B**) reducing MAPK/STAT3mediated Th1 cytokine production, (**C**) hampering metabolic signaling within T cells leading to an inactive T cell phenotype, (**D**) suppressing DC-mediated T cell activation, facilitating expansion of (**E**) Tregs and (**F**) MDSCs, (**G**) differentially regulating production of chemokines involved in immune cell recruitment, for example, CXCL2, CXCL3, CCL3, CCL24, and CCL8 by inhibiting ERK and p38 MAP kinases, and (**H**) driving M-CSF-mediated M2 macrophage polarization through increased β -catenin/S100a4-RAGE/NF-*k*B/M-CSF signaling. Furthermore, CD200/CD200R signaling stimulates cancer invasion and metastasis by increasing the expression of (**I**) Ctsk and (**J**) EMT-related genes. "https://www.biorender.com/ (accessed on 22 September 2023)".

In-life Plasma Titer Checks of Immunized llamas

Figure 2. In-life plasma titer checks guide selection of llamas with highest huCD200R1 titer. Two Llamas were immunized with a mixture of human and cyno CD200R1-Fc. Blood plasma was collected at three time points (D16, D30, D57), diluted as indicated and tested for human and cyno CD200R1-HIS binding by ELISA. RLU: relative light unit.

On-chip Screening Assays for Llama IgG Secretion and Antigen Binding

Figure 3. On-chip screening assays for Llama IgG and antigen binding B cells from hu/cy CD200R1-Fc immunized llama were isolated and imported into 40,000 NanoPen[®] chambers and screened on-chip for (a) VHH (Llama IgG 2/3) secretion, (b) antigen-binding to human CD200R1-HIS antigen and (c) cyno CD200R1-HIS antigen. Pictured are representative field-of-view images. In an automated manner, accompanied by manual verification of hits, the Beacon[®] system identified hits by analyzing Alexa Fluor 488-positive blooms.

• Hundreds of single B cells were sequenced, and 31 unique clones were identified.

Figure 5. Analysis of CDR3 length and extent of affinity maturation in vivo. (a) CDR3 length ranged from 5 to 23 amino acids, 14.1 ± 1.2 , mean \pm SEM, n=31. (b) Percent identity to germline: 87.3 \pm 0.4, mean \pm SEM, n=31.

Recombinant Production of VHH-huFc Leads and Assessment of Binding Potency against Human and Cyno CD200R1

Figure 6. Recombinant production of VHH-huEc leads and assessment of binding potency against human and cyno CD200R1. (a) Recombinant antibody yields following small-scale (10 mL) high throughput production using Curia's TunaCHOSM platform: 7.84 ± 2.63 mg, n=31. (b) huCD200R1 EC₅₀ by ELISA: 1.6 ± 0.2 nM, n=30. (c) cyCD200R1 EC₅₀ by ELISA, 3.2 ± 0.6 nM. (a-c): mean ± SEM (d) example EC₅₀ curves for anti-CD200R1 VHH-Fc D130493_4290.

Phylogenetic Tree of 31 VHH-hFc Variants with Assay Data

Notes

• A informatics tool was used to visualize the phylogenetic tree of the unique hits along with the data from different assays .

Carterra HTP Kinetics Results

Methods

- Kinetics Analysis with Carterra LSA (SPR)
- Ligands: (32) Llama VHH-Fcs
 - 31 Purified VHH Fcs from CHO production
 - 1 purified hIgG4 Fc Isotype Control
- Analyte: (1) hu-CD200R1(27-266)-His6
- Chip: HC₃oM
- Capture Kinetics

Results

- Sensorgrams were picked for each interaction based on best fit.
- A response was observed for 30 out of 32 test articles.
 - (30) Binders with nM affinity: 13 single-digit, 10 double-digit, and 7 triple-digit nM binders
 - (2) non-binders (Including an Fc Isotype Control)
 - Isotype control is not expected to bind to huCD200R1
- The affinities for all antibodies are summarized in the table to the right. The results (including k_{a} , k_{dis} , and K_{D}) and sensorgrams are shown in subsequent slides

Ligand Name	K _D (M)
D130493_238	3.30E-09
D130489_2803	5.00E-08
D130493_784	1.50E-07
D130493_12743	6.10E-08
D130493_4014	4.60E-07
D130489_10750	2.10E-07
D130489_2080	3.60E-09
D130489_9302	n.d.
D130493_12318	4.10E-09
D130489_58	3.70E-08
D130489_9956	2.10E-07
D130489_7911	5.30E-09
D130493_4290	3.30E-08
D130489_10545	6.70E-09
D130493_2581	5.20E-09
D130489_19475	9.40E-08
D130489_7776	1.40E-07
D130489_192	3.70E-08
D130493_8314	5.20E-09
D130493_18589	2.60E-09
D130493_5084	4.90E-09
D130489_10302	4.00E-08
D130493_2607	1.90E-09
D130489_4074	6.20E-09
D130493_2651	1.90E-07
D130489_1792	2.90E-09
D130493_3628	8.50E-07
D130493_17025	6.6oE-o8
D130493_416	8.20E-08
D130493_1469	7.50E-09
D130493_7979	4.80E-08
hlaG4 S228P/L235A Fc Isotype Control	nd

Sensorgrams and Kinetic Constants [Set 1]

Ligand Name

D120/02 228

ROI

D130489_2080

=		0.0 - 00	• .	0.01 00
193	D130493_784	1.5E-07	1.0E+04	1.5E-03
241	D130489_2080	3.6E-09	2.2E+04	7.6E-05
13	D130493_12318	4.1E-09	1.5E+04	6.2E-05
61	D130493_4290	3.3E-08	6.0E+03	2.0E-04
157	D130489_10545	6.7E-09	1.8E+04	1.2E-04
253	D130493_2581	5.2E-09	2.7E+04	1.4E-04
121	D130489_192	3.7E-08	2.3E+04	8.7E-04
169	D130489_10302	4.0E-08	7.5E+03	3.0E-04
277	D130493_7979	4.8E-08	1.4E+04	6.7E-04

 $K_{\rm D}$ (M)

3.3F-09

k_a (1/Ms)

2.1F+04

D130493_12318

800

800

k_{dis} (1/s)

6.8F-05

1000

1000

1200

1200

0.0e0

1.4e-9

4.1e-9 1.2e-8 3.7e-8

1.1e-7

3.3e-7

1.0e-6

Some data processing parameters were changed to achieve best fit for all test articles Set 1: All concentrations included, full dissociation fit

Set 2: All concentrations included, shortened dissociation fit Set 3: Top concentration excluded, full dissociation fit Set 4: Top concentration excluded, shortened dissociation fit

Time (s)

© 2025 Curia Global, Inc. 15

Sensorgrams and Kinetic Constants [Set 2]

0 200 400 600 800 1000 1200 Time (s)

25 D130489_7776 1.4E-07 1.3E+04 1.8E-03 37 D130493_2651 1.9E-07 1.1E+04 2.1E-03 229 D130493_3628 8.5E-07 9.0E-03 1.1E+04 325 D130493_17025 6.6E-08 2.2E+04 1.4E-03 85 D130493_416 8.2E-08 1.4E+04 1.1E-03

3.7e-8

1.1e-7

3.3e-7

1.0e-6

Some data processing parameters were changed to achieve best fit for all test articles Set 1: All concentrations included, full dissociation fit

Set 2: All concentrations included, shortened dissociation fit

Set 3: Top concentration excluded, full dissociation fit Set 4: Top concentration excluded, shortened dissociation fit

16

Sensorgrams and Kinetic Constants [Set 3]

Time (s)

Time (s)

() 200 160

Response (80 40 0

D130489_7911

D130493_2607

ROI	Ligand Name	<i>K</i> _D (M)	<i>k</i> _a (1/Ms)	k _{dis} (1/s)
99	D130489_2803	5.0E-08	4.1E+04	2.0E-03
289	D130493_12743	6.1E-08	1.2E+04	7.0E-04
111	D130489_58	3.7E-08	1.3E+04	4.9E-04
301	D130489_7911	5.3E-09	2.5E+04	1.3E-04
217	D130493_8314	5.2E-09	4.2E+04	2.2E-04
313	D130493_18589	2.6E-09	3.8E+04	9.9E-05
73	D130493_5084	4.9E-09	1.0E+05	5.0E-04
265	D130493_2607	1.9E-09	1.3E+05	2.5E-04
133	D130489_1792	2.9E-09	1.5E+05	4.4E-04
181	D130493_1469	7.5E-09	2.5E+04	1.9E-04

Some data processing parameters were changed to achieve best fit for all test articles Set 1: All concentrations included, full dissociation fit

Set 2: All concentrations included, shortened dissociation fit

Time (s)

Set 3: Top concentration excluded, full dissociation fit

Set 4: Top concentration excluded, shortened dissociation fit

© 2025 Curia Global, Inc.

Sensorgrams and Kinetic Constants [Set 4]

$D130489_4074$

ROI	Ligand Name	<i>К</i> _D (М)	<i>k</i> _a (1/Ms)	k _{dis} (1/s)
361	D130489_4074	6.2E-09	1.5E+05	9.1E-04

Some data processing parameters were changed to achieve best fit for all test articles

Set 1: All concentrations included, full dissociation fit

Set 2: All concentrations included, shortened dissociation fit

Set 3: Top concentration excluded, full dissociation fit

Set 4: Top concentration excluded, shortened dissociation fit

Sensorgrams and Kinetic Constants [Non-Binders]

	0.0e0
	1.4e-9
	4.1e-9
	1.2e-8
	3.7e-8
	1.1e-7
	3.3e-7
	1.0e-6

ROI	Ligand Name	<i>K</i> _D (M)	<i>k</i> _a (1/Ms)	k _{dis} (1/s)
337	D130489_9302	n.d.	n.d.	n.d.
373	hlgG4_S228P/L235A_Fc_lsotype_Control	n.d.	n.d.	n.d.

Key	n.d. = Not determined	; No binding observed
-----	-----------------------	-----------------------

Epitope Binning Methods (Briefly)

- Array preparation. 32 Ligands (31 Ab, and CD200) were coupled to an HC30M chip via Sulpho-NHS/EDC coupling chemistry and blocked with ethanolamine. Samples were run in replicates at three concentrations: 10 μg/mL, 2 μg/mL, and 0.33 μg/mL].
- 2. 150 nM of antigen in HBSTE+BSA was injected to saturate the ligand binding sites for 10 min
- 3. 30 μg/mL IgG (analyte) sample in HBSTE+BSA was injected for 7 min to form Ab-Ag-Ab' sandwich.
- 4. At the end of each cycle, the chip was regenerated with 10 mM Glycine pH 2.0 to remove bound antigen and IgG.
- 5. Steps 2-4 were repeated for all analyte IgGs.
- 6. Epitope analysis was performed with Carterra's Epitope© software.

Classical Sandwich

Normalized Heat Map

<u>Notes</u>

The diagonal line in the chart indicates self interaction between the ligand form and analyte form of the same antibody

Notes:

- 6 distinct bins, are unambiguously identified.
- Members of each bin are colored in the same color on the left and on the top.

Network Plot of Bins from Epitope Analysis

Community Network Plot

- The community network plot is used to explore clustering of mAbs that share similar but not necessarily identical competition profiles.
- Solid lines indicate a symmetrical blocking relationship, where both mAbs in the pairing blocked as analytes.
- Any interactions between Abs that do not have a line connecting them are sandwiching interactions.

Notes:

- 6 distinct bins are unambiguously identified.
- The 6 bins are treated as 6 communities without further grouping.
- CD200 ligand is in the bin colored in red. It is blocked by antibodies in the red, teal, and orange bins.

Network Plot of Bins from Epitope Analysis – Cross Reactivity

Community Network Plot

- The community network plot is used to explore clustering of mAbs that share similar but not necessarily identical competition profiles.
- Solid lines indicate a symmetrical blocking relationship, where both mAbs in the pairing blocked as analytes.
- Any interactions between Abs that do not have a line connecting them are sandwiching interactions.
- Colors show cross reactivity to mouse and cyno CD200 based on ELISA

Network Plot of Bins from Epitope Analysis – KD values

Community Network Plot

- The community network plot is used to explore clustering of mAbs that share similar but not necessarily identical competition profiles.
- Solid lines indicate a symmetrical blocking relationship, where both mAbs in the pairing blocked as analytes.
- Any interactions between Abs that do not have a line connecting them are sandwiching interactions.
- Colors show KD values from Carterra Kinetics
 - D130493_4014 has a KD value of 460 nM.
 - Coloring was skewed when this value was included, so it was excluded in this figure

- Curia's HTP single B cell workflow enables the rapid discovery of diverse llama derived VHH antibody hits within one month after immunization, significantly accelerating the discovery timeline.
- This platform identified diverse, high-affinity, functionally blocking anti-human and cyno CD200R1VHH candidates, providing a robust platform for therapeutic development.
- The CD200R1-targeting VHH antibodies are potential checkpoint inhibitors and are available for licensing. Please contact <u>antibody@curiaglobal.com</u> to learn more.