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Abstract

GLIMPSE-1 is a protein language model trained solely on paired human
antibody sequences. It captures immunological features and achieves best-in-class
performance in humanization benchmarks. We demonstrate the utility of
GLIMPSE-1 in humanization; engineering of antibodies for affinity, species
cross-reactivity, and key developability parameters; and the creation of highly
divergent functional variants with <90% sequence identity to a marketed
antibody. Learning exclusively from human antibody data enables GLIMPSE-1 to
enhance therapeutics and native antibodies based on patterns in the human repertoire.

Disclaimer: While we provide detailed descriptions of experimental methods and
success metrics, certain methodological details of GLIMPSE-1 remain proprietary
and/or redacted in this work for commercial considerations. We warmly invite
researchers and potential collaborators interested in accessing GLIMPSE-1 to
connect with our team via partnerships@infinimmune.com.

1 Introduction

Therapeutic antibodies are a cornerstone of modern medicine, with applications in many diseases.
Their success stems from their natural function as products of the adaptive immune system, shaped by
evolution for millions of years to recognize and respond to targets with extraordinary selectivity. This
specificity, combined with favorable stability and safety characteristics, underpins their widespread
therapeutic success.

Therapeutic antibody discovery traditionally relies on biological systems, primarily through model
organism immunization and display libraries from immunized animals. Newer approaches, including
our own Anthrobody® platform, leverage human biology to discover antibodies with superior properties
de novo. Human antibodies contain unique sequence patterns and structural motifs adapted to human
physiology, ensuring proper folding, stability, and immune compatibility. However, all discovery
methods typically produce antibodies that require additional engineering to create sufficiently potent
and manufacturable molecules. This need fuels ongoing advances in computational methods for
antibody evaluation, engineering, and optimization.

We present GLIMPSE-1 (Generative Language Immunoglobulin Model for Protein Sequence
Engineering), a protein language model trained exclusively on human antibodies to maintain the
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delicate balance achieved through evolution. This contrasts with prior work (Table S1) where models
were commonly trained using heterogeneous datasets (PDB1, OAS2, and/or SAbDab3). Moreover,
we use only paired sequences, to account for the biological and physical interactions between heavy
chains and light chains. Notably, BALM-Burbach4 was also exclusively trained on paired human
sequences, but data from only 4 donors were included. In further contrast, GLIMPSE-1 employs a
different architecture and was trained on data from a much larger number of donors.

Here we show that GLIMPSE-1 mirrors human biology, enabling it to enhance existing therapeutics
and antibodies found in humans. Our work bridges the gap between directly sourcing human antibodies
and engineering them based on patterns observed in the broader human repertoire.

2 Results

2.1 GLIMPSE learns exclusively from paired human antibody data

We first trained and evaluated GLIMPSE-0, a RoBERTa5 model, using a corpus of unique, productive,
and natively paired antibody Fv amino acid sequences, including public data from Jaffe et al. (2022) and
proprietary data from Infinimmune’s Complete Human® immunosequencing technology. GLIMPSE-0
produced surprisingly promising results despite being trained on data with limited diversity and
suboptimal train/test splits. These early findings motivated us to develop a more robust model with an
improved architecture and more diverse training data. Subsequently, we trained GLIMPSE-1, on a
curated dataset also comprising public sequences from Jaffe et al. (2022) and proprietary sequences
from Infinimmune’s Anthrobody® and Complete Human® platform technologies.

2.2 GLIMPSE-1 learns immunologically relevant sequence features of antibodies

Antibody Fv sequences develop through the rearrangement of variable (V), diversity (D), and joining
(J) genes during B cell maturation. This process, along with somatic hypermutation (SHM), generates
the sequence diversity that powers adaptive immunity. While this diversity is most pronounced at
V(D)J junctions, most Fv sequences remain recognizably related to their original V gene sequences.
A well-trained antibody language model (AbLM) should naturally recognize V gene lineages by
clustering related superfamily and subfamily sequences while distinguishing between different ones.
GLIMPSE-1 successfully captures this biological organization. When we embedded 0.6M paired
Fv sequences from antibodies discovered at Infinimmune (see Methods), the resulting visualization
revealed clear immunological structure (Figure 1).

The top row of Figure 1 demonstrates this structure at the resolution of V gene superfamilies, with a
curious pattern where more heavily mutated sequences appear more centrally within clusters. We
examined this pattern more closely by focusing on the IGHV4 x IGKV3 superfamily cluster (bottom
row). When colored by V gene subfamily, a tree-like structure emerges. Sequences clearly identifiable
as specific subfamilies form distinct "branches", while more heavily mutated sequences gather in a
central "trunk" region having diverged further from their germline origins.

A biologically accurate AbLM should predict both which positions tolerate variation and which
require conservation, beyond simply recognizing V genes. We analyzed GLIMPSE-1’s preferences
across XY62, a TNFα-specific antibody isolated from a human donor using the Anthrobody® platform.
As shown in Figure 2, FR positions display strong conservation with GLIMPSE-1 favoring residues
present in both germline and native antibody (purple). CDRs show greater diversity with complex
preferences, sometimes favoring germline residues (blue), native non-germline residues (red), or
alternative amino acids (grey). CDRH3 displays the highest diversity, consistent with its role in
antigen specificity. These biases accurately reflect the biological constraints of antibody maturation.
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Figure 1: GLIMPSE-1 learns immunologically relevant sequence features of antibodies. Top:
UMAP7 embeddings of GLIMPSE-1 last-layer embeddings for 0.6M antibodies discovered at
Infinimmune colored by heavy chain V gene superfamily (left), light chain V gene superfamily
(center), and number of DNA mutations from the inferred V gene allele for the donor of each
particular antibody (right). Bottom: A single superfamily combination (IGHV4-IGKV3) from the
global UMAP, showing how V gene subfamilies drive sequence clustering (left and center), while
mutation accumulation (right) reduces subfamily identity while preserving superfamily association.
This organization resembles a tree structure where identifiable subfamily sequences form distinct
"branches" and more heavily mutated sequences gather in a central "trunk."
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Figure 2: GLIMPSE-1 reflects freedoms and constraints of antibody sequence generation,
maturation, and function. Sequence logos show GLIMPSE-1’s amino acid preferences across
XY62, an anti-TNFα antibody. Colors indicate residue origin: germline non-native residues (blue),
residues present in both native and germline sequences (purple), native non-germline residues (red),
and alternative residues that are predicted by GLIMPSE-1 (grey). Stack height represents information
content at each position, with taller stacks indicating stronger conservation. Framework regions
(FR) show strong conservation with preference for germline-native residues, while complementarity-
determining regions (CDRs) display greater sequence diversity and more complex preferences.
CDRH3 shows the highest variability, consistent with its primary role in antigen recognition during
antibody maturation.
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2.3 GLIMPSE-1 achieves state-of-the-art performance in antibody humanization

Figure 3: Humanization of 20 mouse-derived clinical stage antibody therapeutics. In each
iteration, models were restricted to modifying only framework regions while preserving CDRs,
selecting a single amino acid mutation aimed at humanizing the parental mouse antibody. (A) Mean
number of residues correctly humanized by different antibody language models after 30 iterations.
GLIMPSE-1 (red) and Sapiens (blue) are similarly capable of correctly predicting humanizing residues
and outperform all other AbLMs evaluated. (B) Individual performance curves for each of the 20
antibodies. Each line represents a different model’s performance across iterations, with GLIMPSE-1
(red) and GLIMPSE-0 (green) consistently among the top performers. The dotted line represents a
perfect 1:1 incorporation of mutations from parental mouse to humanized therapeutic sequence.

Converting non-human or partially-human antibodies into effective therapeutics remains an important
challenge in antibody development. Though modern humanization protocols have become more
systematic, the process still requires careful engineering to preserve binding affinity while minimizing
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immunogenicity. Even with established methods, humanization projects require expertise and
validation time, and outcomes can vary in how well they maintain the desired properties of the parent
molecule while achieving human-like characteristics. AbLMs like GLIMPSE-1 may offer a new
approach to potentially streamline this process while maintaining core antibody attributes.

We evaluated GLIMPSE-1’s humanization capabilities using 25 pairs of parental and humanized
clinical molecules from Prihoda et al. [8], of which 20 could be independently confirmed. We
benchmarked GLIMPSE-1 against nine other antibody language models using an iterative humanization
approach (see Methods). As shown in Figure 3, GLIMPSE-1 matches or exceeds the performance
of all other models, including Sapiens, in predicting the mutations found in clinical humanized
antibodies. Notably, GLIMPSE-1 achieved this performance despite significantly more constrained
training resources compared to Sapiens’, highlighting the value of a diverse and well-curated human
dataset and its utility in training AbLMs.

Figure 3B shows the performance of GLIMPSE-1 and other models across individual antibodies when
we restricted models to modify only FRs while leaving CDRs intact. This approach mirrors common
clinical practice to preserve antigen binding. We observed consistent strong performance from
GLIMPSE-1 across the antibody panel, though the difficulty of replicating the original humanization
strategies varied (cf. omalizumab vs. eculizumab). We obtained similar results when allowing
modifications throughout the variable domains (Figure S1) or restricting changes to non-paratope
residues (Figure S2).

2.4 GLIMPSE-1 exploits constrained diversity to engineer antibodies

We integrated GLIMPSE-1 into our antibody engineering process to optimize molecules against four
undisclosed targets (A-D). We generated variant molecules using GLIMPSE-1 recommendations,
complemented when available by intra-clonotype variation identified through our Complete Human®

technology.

SPR characterization revealed that while many variants showed reduced binding kinetics, several
mutations for antibodies against each target significantly improved affinity compared to both parental
molecules and biosimilars of clinical controls (Figure 4). Beyond affinity optimization, our engineering
approach simultaneously addressed developability concerns by removing sequence liabilities predicted
in silico, such as fragmentation, deamidation, and isomerization motifs, among others.

For Target A, we performed a deeper engineering campaign across five unique antibodies to mitigate
potential liabilities while maintaining or improving binding. We evaluated these variants for binding
to human, cynomolgus monkey, and mouse versions of the antigen (Figure 5B, 5C). As expected,
binding affinity correlation was stronger between evolutionarily closer species (Cyno~Human Pearson
R2 = 0.78) than between more distant ones (Mouse~Human Pearson R2 = 0.15). Variants appearing
off-diagonal may represent cases where species-specific differences in the antigen epitope influence
antibody recognition. Additionally, we engineered variants of families (INF1164, INF1169, and
INF1181) for formulation-preferred isoelectric point (pI) as calculated using the method of Bjellqvist
et al9. Binding affinity of these variants was minimally impacted by this engineering, as determined
by bio-layer interferometry (Figure 5D).

Figure 5A reveals an important engineering principle: improving already high-affinity antibodies
(e.g. INF1169, INF1181) presents a greater challenge than enhancing moderate-affinity starting
points (e.g. INF147), demonstrating the diminishing returns often encountered in affinity maturation.
While affinity optimization represents a common benchmark for antibody engineering platforms,
GLIMPSE-1’s capacity to simultaneously address multiple design considerations points to its potential
for solving more fundamental challenges in therapeutic antibody development.
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Figure 4: SPR affinity characterization of antibodies engineered using GLIMPSE-1. Kinetic
parameters (koff vs. kon) for antibodies targeting four undisclosed antigens (A-D). Colors indicate
antibody categories: parent antibodies (green squares), engineered variants (blue circles), and
clinical controls (red inverted triangles). Diagonal dashed lines mark constant KD values (1nM
and 1µM labeled). While many engineered variants exhibit reduced binding parameters, several
variants demonstrate improved affinity compared to their respective parents and controls. We
removed sequence liability motifs predicted in silico from these affinity-improved variants during the
engineering process.
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Figure 5: Sequence optimization of five unique antibodies that bind target A. (A) KD values for
parent antibodies (red dotted lines) and engineered variants (points) across five antibody families.
Colors indicate liability scores from low (dark blue) to high (yellow). We mitigated high-risk
sequence liabilities using GLIMPSE-1 predicted alternatives and clonally related sequences where
available. (B-C) Correlation of binding affinity across species: human vs. mouse (B) and human vs.
cynomolgus monkey (C). Points are colored by antibody family. The stronger correlation between
human and cynomolgus (Pearson’s R2 = 0.78) compared to human and mouse (Pearson’s R2 = 0.15)
reflects the evolutionary conservation of the antigen. Variants falling off the diagonal may represent
antibodies binding to epitopes with species-specific differences. (D) Human binding affinity (KD)
across predicted isoelectric point (pI) values for variants of antibodies INF1164, INF1169, and
INF1181. Vertical dashed lines indicate the predicted pI value of the parental antibody, demonstrating
successful engineering for formulation-preferred range. The grey band indicates a range of 2-fold
relative to the KD of the parental antibody.
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2.5 GLIMPSE-1 streamlines identification of highly divergent and functional antibody
variants

Therapeutic applications increasingly require antibody variants that preserve target binding while
diverging significantly in sequence from the original molecule. Ideally these variants would occupy
distinct viable sequence spaces while maintaining core functionality, akin to proteins that serve the
same function across different species. Traditional methods to create such variants include CDR
scanning mutagenesis, display libraries, epitope/paratope-guided design, and CDR grafting, each
with limitations in speed and scope. In this setting, an AbLM could define the sequence constraints
that permit substantial diversification from a parental antibody while maintaining essential functional
attributes and desirable characteristics such as humanness.

Figure 6: Engineering divergent, functional antibody variants. (A) Experimental design showing
our two-stage approach in which we test multiple FR mutations per variant (top) and evaluate pairwise
CDR combinations (bottom). (B) Expression yield vs. binding affinity for generated variants. (C)
Binding affinity comparison across different mutation categories, with color indicating mutation count
from parent sequence. (D) Thermal stability measurements (Tm1 and Tm2) showing preservation of
stability in engineered variants.

GLIMPSE-1 offers a powerful approach for exploring novel functional sequence space starting from
existing antibodies. We evaluated its capabilities using a clinically validated, marketed antibody that
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underwent humanization during its development (Figure 6). Our approach followed a two-stage
engineering process.

First, we used GLIMPSE-1 to identify probable sequence variants in both framework regions (FRs)
and CDRs of the heavy and light chains. We combined these variants according to a systematic
strategy (Figure 6A). We evaluated CDR mutations in pairs, limiting to one chain and one mutation
per CDR, and incorporated multiple FR mutations per variant on a single chain at a time. All
GLIMPSE-1-generated variants expressed in CHO cells (Figure 6B). Affinity testing showed that
while many variants had diminished binding to target B, a subset maintained or improved affinity
(Figure 6C).

In the second stage, we combined all FR mutations with sets of functional CDR mutations across
both heavy and light chains. This generated divergent sequences with <90% total identity to the
parental clinical antibody. All GLIMPSE-1-generated variants expressed in CHO cells (Figure 6B).
Many of these extensively modified variants maintained kinetic parameters comparable to the parental
antibody’s binding to target B, with several reaching the assay’s limit of quantification for koff
alongside the parental molecule (Figure 6C). The variants preserved thermostability, contained no
additional liabilities compared to the original sequence, and maintained expression yields within
expected ranges (Figure 6B, 6D).

3 Discussion

We developed GLIMPSE-1, a protein language model for practical human antibody engineering.
By training solely on human antibody sequences, our model captures the biological patterns and
constraints of human antibody repertoires. Since antibodies in the immune system evolve toward
optimal heavy-light chain combinations6, we trained GLIMPSE-1 on paired chain data. As in somatic
hypermutation, GLIMPSE-1 explores a spectrum of mutations, of which many enhance key properties
like affinity, yield, and stability, and others do not. This approach aligns with the findings of Shehata
et al. that human B cell-derived antibodies exhibit distributions of thermal stability, polyreactivity,
and hydrophobicity comparable to clinically approved mAbs10.

In humanization benchmarking, GLIMPSE-1 performs competitively with Sapiens despite being
trained on a dataset much smaller than the training data used in Prihoda et al.8. This efficiency
demonstrates the strategic value of curated, paired human antibody repertoire data over sheer training
volume. By focusing exclusively on human paired heavy and light chain variable regions, GLIMPSE-1
avoids the introduction of spurious motifs from non-human and non-antibody proteins. Paired
antibody sequences encode biological phenomena that models can harness, such as light chain
coherence6, to avoid biologically implausible recommendations and minimize polyspecificity11. This
extends to paratope residues, whereas native antibodies distribute their binding contacts across CDRs
while synthetic antibodies rely heavily on CDRH3 contacts12.

The benefits of learning from in vivo antibody development generalize beyond human sequences,
including to llama and mouse with similar improvements in expression, stability, and affinity as in
this work13,14. This is also true in vitro, where cellular quality control in mammalian antibody display
filters problematic antibody variants15. However, species-specific immunoglobulin adaptations cannot
be ignored, such as the CDR-stabilizing DE loop ("CDR4")16. These interactions do not simply arise
through somatic hypermutation and affinity maturation. Rather, Shrock et al. discovered that species
recognize different epitopes due to divergent germline-encoded binding motifs (GRAB motifs), with
mice and non-human primates producing different antibody responses than humans to the same
antigens17. This may explain why "energetic humanization" as performed by Tennenhouse et al.
appears to outperform traditional humanization approaches18.

Human antibody sequences contain evolutionarily optimized features that enhance developability.
Foundational work by Zhai et al. showed that synthetic libraries designed to mimic natural sequence
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distributions achieve expression rates of 93% and significantly outperform conventional approaches19.
While native human antibodies contain chemical liability motifs, those aligned with human germline
positions show reduced susceptibility to modification20. The majority of therapeutic antibodies
occupy a narrow subset of the human antibody developability space, leaving most of the diversity
of the human repertoire clinically unutilized21–23. Despite this, the benefit of human sequence
content is unmistakable and clearly detectable in the framework regions of many approved therapeutic
antibodies24.

Beyond humanization, we demonstrate the practical utility of GLIMPSE-1 in engineering therapeutic
antibodies against multiple targets. Successful engineering requires improvement of one or more
attributes without compromising others. Here we show that GLIMPSE-1 generated variants with
significant improvements in affinity while maintaining thermostability and expression levels similar
to parent sequences. In the case of Target B, these improvements led to sub-nM binding affinities
that approached or matched clinical controls, with improvements in both association and dissociation
rates. Unsurprisingly, in cases where the paratope is relatively conserved across species, we find
that on average improving affinity to the human target protein similarly improves affinity to the
non-human protein as well. Our approach is supported by multiple studies that human-trained models
can effectively guide engineering and simultaneous optimization of affinity, stability, solubility, and
others, albeit with a substantially reduced focus on human antibody data25–33. We note in particular
work from Frey et al., where all successfully engineered variants originated from parental antibodies
discovered from in vivo immunization campaigns or antibody repertoire sequencing of immunized
animals, rather than de novo design34.

GLIMPSE-1 provides a foundation for engineering therapeutic antibodies using only amino acid
sequence data. Somatic hypermutation succeeds in vivo despite its inefficiency because billions of B
cells can explore sequence space simultaneously at minimal biological cost. Antibody engineering,
however, requires time and resources for each variant produced and tested. The framework we employ
here utilizes GLIMPSE-1 to enable efficient optimization of antibody humanness and other desirable
properties such as binding affinity and developability. Preliminary data from our active learning
cycles with GLIMPSE-1 further validates its real-world utility in antibody engineering campaigns,
though detailed discussion of these applications falls beyond the scope of this current work.
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6 Methods

6.1 Training

GLIMPSE-0 is a RoBERTa5 encoder-only model, trained against a masked learning modeling (MLM)
objective. GLIMPSE-0 was trained and evaluated on a dataset composed of paired Fv sequences
from human donors. A number of sequences were withheld from training for evaluation and testing.
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GLIMPSE-1 employs a modern architecture with custom parameter configurations designed specifi-
cally for antibody sequence modeling. GLIMPSE-1 was trained against a masked learning modeling
(MLM) objective. GLIMPSE-1 was trained on, evaluated against, and tested against a dataset
composed of paired Fv sequences from human donors. Notably donors were disjoint between sets, so
as to evaluate and test the model as if it were seeing sequences from a heretofore unobserved donor.

6.2 UMAP and FR/CDR Sequence Logos

A 2-dimensional embedding of 633,638 sequence pairs from the proprietary Infinimmune dataset was
made by first averaging all final layer activations of GLIMPSE-1 for each of the sequence pairs, then
directing the resulting vectors through UMAP7 parameterized with 15 neighbors and 2 components.
V-gene germline assignments and the total DNA mutations from said germline were inferred for plot
annotation using proprietary tooling. Sequence logos35 of antibody XY62 (discovered at Infinimmune)
were generated by providing the sequence pair to GLIMPSE-1 and transforming the final logits via
softmax into likelihoods, then providing the resulting tables to ggseqlogo36 for plotting. Germline
annotations were provided via alignments given by RIOT11.

6.3 Humanization

Twenty clinical antibodies with matched parental mouse sequences from Prihoda et al. [8] were
identified to benchmark the humanization performance of GLIMPSE-1 against available AbLM
variants, including AbLang37, AbLang238, AntiBERTa(-CSSP)39, BALM-Burbach4, ESM-2-ft4,
BALM-Jing40, CurrAb41 and Sapiens8. Beginning with the parental sequence, and using the output of
the previous iteration as input to the next, each model was queried for the single most likely mutation
to the input sequence by masking each residue and comparing the softmax-derived log-likelihood of
the original residue to what the model predicts under the masked language objective. This mutation,
if one existed, was applied to the input sequence, which was subsequently fed into the next iteration.
The mutations proposed at each iteration were then compared to the sequence of the clinical molecule,
where mutations included in the clinical molecule count toward successful "humanization". This was
done until the model no longer provided likelihood-increasing recommendations or for a maximum
of 100 iterations. We tested this approach using three strategies: global, CDR, and paratope. First,
we individually masked residues globally across the VH and VL domains of each parental antibody
("global"). Second, we masked FR residues only, defined according to the North definition of CDRs,42

allowing each model to evaluate and alter the FR regions but not the CDRs ("CDR"). Finally, for a
subset of the antibodies which have solved crystal structures in complex with antigen in the PDB, we
masked all non-paratope residues, allowing each model to evaluate and alter any residue that does not
contact antigen according to the crystal structure(s) of the clinical antibody and its cognate antigen
("paratope"). The set of paratope-defined antibodies as of April 2025 included certolizumab (5wux),
eculizumab (5i5k), ligelizumab (6uqr), omalizumab (5hys, 7shy, 5g64), pembrolizumab (5ggs, 5jxe,
5b8c), solanezumab (4xxd), and tocilizumab (8j6f). Paratope residues for this exercise were defined
using ChimeraX version 1.8.43 We identified paratope residues using the Contacts workflow to locate
residues in the heavy or light chain with ≥15.0 Å2 buried solvent-accessible surface area in contact
with antigen.

6.4 Antibody Production

Antibodies were produced at 1 mL scale in ExpiCHO™ cells at Twist Bioscience. Clarified cell
culture supernatant containing monoclonal antibodies was purified using Protein A magnetic beads
(Pierce™, Thermo Fisher) on the KingFisher™ APEX automated purification system. Briefly, 1
mL of supernatant was incubated with Protein A beads for 1 hr at room temperature with gentle
mixing to facilitate antibody binding. Beads were then magnetically harvested and washed twice
with phosphate-buffered saline (PBS) to remove unbound proteins and residual media components.
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Bound antibodies were eluted using 0.2 mM glycine (pH 2.7) and immediately neutralized with 1 M
Tris-HCl (pH 8.0). The purified antibodies were stored at 4°C until further use.

Additional antibodies were produced at 1 mL scale in TurboCHOTM at GenScript. Antibodies were
either delivered as cell culture supernatants and purified as described above, or purified at GenScript
(Protein A purification, eluted in sodium acetate buffer, pH 5.5 with 0.2 M L-Arginine).

6.5 Antibody Kinetics Measurements

Surface plasmon resonance (SPR) measurements were taken on a Carterra LSA-XT platform. A
PAGHC30M chip was preconditioned with 1 min injections of 25 mM NaOH followed by 10 mM
glycine pH 2.0. Antibodies (2 µg/ml) were captured for 10 min. Analytes were prepared at 0.04 nM,
0.2 nM, 1.0 nM, 5.0 nM, and 25 nM. Non-regenerative kinetics were used for each analyte, with 5
minute association and 60 minute dissociation. Regeneration between each series of analyte was
performed with 10 mM glycine, pH 2.5, 3 x 45 seconds.

Bio-layer interferometry (BLI) measurements were performed on a Gator Prime Core instrument
according to the manufacturer’s recommendations. Briefly, antibodies were diluted in diluent solution
(0.1% BSA in PBS) and loaded onto protein A probes without reaching saturation. Following a
baselining step, ligand association was measured in 100nM or 200nM antigen solution in diluent. After
120s association, dissociation was measured in diluent solution for an additional 120s. Association
rate (kon), dissociation rate (koff), and dissociation constant (KD) were computed using Gator software
with Y-axis alignment (Association start, average 10s) and inter-step correction (Association, average
10s) settings turned on.

6.6 Antibody Melting Point Measurements

An 8.8 µL aliquot of each sample was loaded into low-volume quartz cuvettes (Unchained Labs)
for thermal unfolding analysis using the Uncle instrument (Unchained Labs). The temperature was
ramped linearly from 15°C to 95°C at 0.6°C/min, while fluorescence was recorded at excitation
wavelengths of 310 nm and 370 nm. Barycentric Mean Fluorescence (BCM) was continuously
monitored throughout the temperature ramp. BCM quantifies protein unfolding by measuring the
fluorescence-weighted center of mass of the emission spectrum, which shifts as tryptophan and
tyrosine residues become solvent-exposed. Tm (melting temperature) values were determined from
BCM-versus-temperature profiles by calculating the first derivative of the BCM curve, with Tm
identified as the temperature corresponding to the maximum inflection point. All samples were
analyzed in replicates, and Tm values are reported as the mean ± standard deviation (SD).
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S Supplemental material

Table S1: Machine learning models for antibody engineering

Model Year Training data Architecture Paired Antibody-
specific

Structure
required

Sapiens8 2022 OAS2 RoBERTa5 no yes no
AntiBERTa39 2022 OAS + SAbDab3 RoBERTa no yes no
AbLang37 2022 OAS RoBERTa no yes no
AbLang238 2024 OAS ESM-2 yes yes no
ProteinMPNN44 2022 PDB1 Custom no no no
ESM-IF145 2023 PDB ESM-IF1 no no yes
BALM-Burbach4 2024 Jaffe et al.6 RoBERTa yes yes no
ESM-246 2024 PDB ESM-2 no no no
IgDesign47 2024 PDB + SAbDab Custom no yes yes
AntiFold48 2024 OAS + SAbDab ESM-IF1 no yes yes
BALM-Jing40 2024 OAS ESM-2 no yes yes
CurrAb41 2025 OAS ESM-2 yes yes no

Figure S1: Humanization of 20 mouse-derived clinical stage antibody therapeutics. In contrast
to Figure 3B, this experiment permitted humanization at all sites.
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Figure S2: Humanization of 7 mouse-derived clinical stage antibody therapeutics. In contrast to
Figure 3B, this experiment permitted humanization at any site not found in contact with the target
antigen using available structures. See 6.3 Humanization for details.

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2025. ; https://doi.org/10.1101/2025.06.08.658113doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.08.658113
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	GLIMPSE learns exclusively from paired human antibody data
	GLIMPSE-1 learns immunologically relevant sequence features of antibodies
	GLIMPSE-1 achieves state-of-the-art performance in antibody humanization
	GLIMPSE-1 exploits constrained diversity to engineer antibodies
	GLIMPSE-1 streamlines identification of highly divergent and functional antibody variants

	Discussion
	Competing interests
	Acknowledgments
	Methods
	Training
	UMAP and FR/CDR Sequence Logos
	Humanization
	Antibody Production
	Antibody Kinetics Measurements
	Antibody Melting Point Measurements

	References
	Supplemental material

