Carterra® LSA®, LSAXT, and Ultra: Sensor Chip Descriptions

Selection of the appropriate sensor chip surface is essential for robust data quality when designing a high throughput SPR assay. Carterra offers a broad range of chip surfaces to support the diverse applications available on the LSA. Described here are the standard chip offerings for the LSA. Custom surfaces may be available upon request. Always consult with a Carterra Applications Scientist when selecting sensor chips.

Linear	poly	carbo	lvxc	ate
LIIICUI	$\boldsymbol{\mathcal{P}}$		// Y I	u c c

Name	Description	Application
НС30М	Polycarboxylate hydrogel, medium charge density, 30nm coating thickness	Moderate ligand capacity and excellent diffusion characteristics
HC200M	Polycarboxylate hydrogel, medium charge density, 200nm coating thickness	Higher ligand capacity for increased levels of immobilization

Carboxymethylated dextran

Name	Description	Application
CMDP	2D planar carboxymethyldextran surface, <5nm coating thickness	Lower ligand capacity and excellent diffusion characteristics
CMD50M	Carboxymethyldextran hydrogel, medium charge density, 50nm coating thickness	Moderate ligand capacity and improved diffusion characteristics
CMD200M	Carboxymethyldextran hydrogel, medium charge density, 200nm coating thickness	Higher ligand capacity for increased levels of immobilization
CMD500M	Carboxymethyldextran hydrogel, medium charge density, 500nm coating thickness	Higher ligand capacity for maximum levels of immobilization

NiNTA

Name	Description	Application
NiCMDP	Planar NTA derivatized carboxymethyldextran, < 5nm coating thickness	Very low capacity capture of His-tagged molecules
NiHC200M	Poly - NTA derivatized linear polycarboxylate hydrogel, medium charge density, 200nm coating thickness	High capacity for His-tagged ligand applications

Streptavidin

Name	Description	Application
SAP	Streptavidin immobilized on 2D planar carboxymethyl dextran surface, <5nm coating thickness	Very low capacity for arraying of biotinylated ligands
SAHC30M	Streptavidin, immobilized in polycarboxylate hydrogel, medium charge density, 30nm coating thickness	Lower capacity for biotinylated ligand kinetic lawns
SAD200M	Streptavidin, immobilized in a carboxymethyldextran hydrogel, medium charge density, 200nm coating thickness	High capacity for biotinylated ligand applications
RSA200M KIT	Oligonucleotide derivatized carboxymethyldextran for reversible immobilization of biotinylated ligands, 200nm coating thickness. RSA reagent included.	Medium capacity reversible capture of biotinylated molecules

Sensor Chip Descriptions 2

Protein A

PAGHC200M

Name	Description	Application
PAHC200M	Protein A derivatized linear polycarboxylate hydrogel, medium charge density, 200nm coating thickness	High capacity for quantitation of human IgG
Protein A/G	Description	Application
Name	Description	Application
PAGP	Planar protein A/G derivatized carboxymethyldextran, < 5nm coating thickness	Very low capacity capture of Fc- containing molecules
PAGHC30M	Protein A/G derivatized linear polycarboxylate hydrogel, medium charge density, 30nm coating thickness	High capacity for quantitation of multi-species IgG

Protein A derivatized linear polycarboxylate hydrogel, medium charge density,

200nm coating thickness

Carterra technology is protected by the following patents and other patents pending: 8,210,119, 8,211,382, 8,383,059, 8,999,726, 9,682,372, 9,682,396, 10,825,548

© 2024 Carterra Inc. Carterra, the Carterra Logo and all other trademarks are property of Carterra unless otherwise specified.

TN112.8-REV012

High capacity for quantitation

[•] NOTE: While CMD is a well described chemistry for use in biosensors, the linear polycarboxylate chemistry of HC chips provides an alternate surface chemistry to that of CMD in instances of non-specific binding or when differential diffusion characteristics are warranted. When stored at -20 °C CMD and HC surfaces are good for 4 years after purchase, while protein derivatized coatings such as SAD should be used within 2 years.