Amir Shanehsazzadeh, Matt McPartlon, George Kasun, Andrea K. Steiger, John M. Sutton, Edriss Yassine, Cailen McCloskey, Robel Haile, Richard Shuai, Julian Alverio, Goran Rakocevic, Simon Levine, Jovan Cejovic, Jahir M. Gutierrez, Alex Morehead, Oleksii Dubrovskyi, Chelsea Chung, Breanna K. Luton, Nicolas Diaz, Christa Kohnert, Rebecca Consbruck, Hayley Carter, Chase LaCombe, Itti Bist, Phetsamay Vilaychack, Zahra Anderson, Lichen Xiu, Paul Bringas, Kimberly Alarcon, Bailey Knight, Macey Radach, Katherine Bateman, Gaelin Kopec-Belliveau, Dalton Chapman, Joshua Bennett, Abigail B. Ventura, Gustavo M. Canales, Muttappa Gowda, Kerianne A. Jackson, Rodante Caguiat, Amber Brown, Douglas Ganini da Silva, Zheyuan Guo, Shaheed Abdulhaqq, Lillian R. Klug, Miles Gander, Engin Yapici, Joshua Meier, Sharrol Bachas


Generative AI has the potential to redefine the process of therapeutic antibody discovery. In this report, we describe and validate deep generative models for the de novo design of antibodies against human epidermal growth factor receptor (HER2) without additional optimization. The models enabled an efficient workflow that combined in silico design methods with highthroughput experimental techniques to rapidly identify binders from a library of ~106 heavy chain complementarity-determining region (HCDR) variants. We demonstrated that the workflow achieves binding rates of 10.6% for HCDR3 and 1.8% for HCDR123 designs and is statistically superior to baselines. We further characterized 421 diverse binders using surface plasmon resonance (SPR), finding 71 with low nanomolar affinity similar to the therapeutic anti-HER2 antibody trastuzumab. A selected subset of 11 diverse high-affinity binders were functionally equivalent or superior to trastuzumab, with most demonstrating suitable developability features. We designed one binder with ~3x higher cell-based potency compared to trastuzumab and another with improved cross-species reactivity1. Our generative AI approach unlocks an accelerated path to designing therapeutic antibodies against diverse targets.

Read the Paper